Omega-3 fatty acid facts for kids
Omega−3 fatty acids, also called omega−3 oils, ω−3 fatty acids or n−3 fatty acids, are polyunsaturated fatty acids (PUFAs) characterized by the presence of a double bond three atoms away from the terminal methyl group in their chemical structure. They are widely distributed in nature, are important constituents of animal lipid metabolism, and play an important role in the human diet and in human physiology. The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). ALA can be found in plants, while DHA and EPA are found in algae and fish. Marine algae and phytoplankton are primary sources of omega−3 fatty acids. DHA and EPA accumulate in fish that eat these algae. Common sources of plant oils containing ALA include walnuts, edible seeds, and flaxseeds as well as hempseed oil, while sources of EPA and DHA include fish and fish oils, and algae oil.
Almost without exception, animals are unable to synthesize the essential omega−3 fatty acid ALA and can only obtain it through diet. However, they can use ALA, when available, to form EPA and DHA, by creating additional double bonds along its carbon chain (desaturation) and extending it (elongation). Namely, ALA (18 carbons and 3 double bonds) is used to make EPA (20 carbons and 5 double bonds), which is then used to make DHA (22 carbons and 6 double bonds). The ability to make the longer-chain omega−3 fatty acids from ALA may be impaired in aging. In foods exposed to air, unsaturated fatty acids are vulnerable to oxidation and rancidity.
There is no high-quality evidence that dietary supplementation with omega−3 fatty acids reduces the risk of cancer or cardiovascular disease. Fish oil supplement studies have failed to support claims of preventing heart attacks or strokes or any vascular disease outcomes.
List of omega−3 fatty acids
This table lists several different names for the most common omega−3 fatty acids found in nature.
Common name | Lipid number | Chemical name |
---|---|---|
Hexadecatrienoic acid (HTA) | 16:3 (n−3) | all-cis-7,10,13-hexadecatrienoic acid |
α-Linolenic acid (ALA) | 18:3 (n−3) | all-cis-9,12,15-octadecatrienoic acid |
Stearidonic acid (SDA) | 18:4 (n−3) | all-cis-6,9,12,15-octadecatetraenoic acid |
Eicosatrienoic acid (ETE) | 20:3 (n−3) | all-cis-11,14,17-eicosatrienoic acid |
Eicosatetraenoic acid (ETA) | 20:4 (n−3) | all-cis-8,11,14,17-eicosatetraenoic acid |
Eicosapentaenoic acid (EPA) | 20:5 (n−3) | all-cis-5,8,11,14,17-eicosapentaenoic acid |
Heneicosapentaenoic acid (HPA) | 21:5 (n−3) | all-cis-6,9,12,15,18-heneicosapentaenoic acid |
Docosapentaenoic acid (DPA), Clupanodonic acid |
22:5 (n−3) | all-cis-7,10,13,16,19-docosapentaenoic acid |
Docosahexaenoic acid (DHA) | 22:6 (n−3) | all-cis-4,7,10,13,16,19-docosahexaenoic acid |
Tetracosapentaenoic acid | 24:5 (n−3) | all-cis-9,12,15,18,21-tetracosapentaenoic acid |
Tetracosahexaenoic acid (Nisinic acid) | 24:6 (n−3) | all-cis-6,9,12,15,18,21-tetracosahexaenoic acid |
Forms
Omega−3 fatty acids occur naturally in two forms, triglycerides and phospholipids. In the triglycerides, they, together with other fatty acids, are bonded to glycerol; three fatty acids are attached to glycerol. Phospholipid omega−3 is composed of two fatty acids attached to a phosphate group via glycerol.
The triglycerides can be converted to the free fatty acid or to methyl or ethyl esters, and the individual esters of omega−3 fatty acids are available.
See also
- Omega−3 acid ethyl esters
- Essential fatty acid interactions
- Essential nutrients
- Inflammation
- Olive oil regulation and adulteration
- Omega−6 fatty acid
- Omega−7 fatty acid
- Omega−9 fatty acid
- Ratio of fatty acids in different foods
- Reinforced lipids