kids encyclopedia robot

Single-cell sequencing facts for kids

Kids Encyclopedia Facts

Single-cell sequencing examines the nucleic acid sequence information from individual cells with optimized next-generation sequencing technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment. For example, in cancer, sequencing the DNA of individual cells can give information about mutations carried by small populations of cells. In development, sequencing the RNAs expressed by individual cells can give insight into the existence and behavior of different cell types. In microbial systems, a population of the same species can appear genetically clonal. Still, single-cell sequencing of RNA or epigenetic modifications can reveal cell-to-cell variability that may help populations rapidly adapt to survive in changing environments.

Background

A typical human cell consists of about 2 x 3.3 billion base pairs of DNA and 600 million mRNA bases. Usually, a mix of millions of cells is used in sequencing the DNA or RNA using traditional methods like Sanger sequencing or next generation sequencing. By deep sequencing of DNA and RNA from a single cell, cellular functions can be investigated extensively. Like typical next-generation sequencing experiments, single-cell sequencing protocols generally contain the following steps: isolation of a single cell, nucleic acid extraction and amplification, sequencing library preparation, sequencing, and bioinformatic data analysis. It is more challenging to perform single-cell sequencing than sequencing from cells in bulk. The minimal amount of starting materials from a single cell makes degradation, sample loss, and contamination exert pronounced effects on the quality of sequencing data. In addition, due to the picogram level of the number of nucleic acids used, heavy amplification is often needed during sample preparation of single-cell sequencing, resulting in uneven coverage, noise, and inaccurate quantification of sequencing data.

Recent technical improvements make single-cell sequencing a promising tool for approaching a set of seemingly inaccessible problems. For example, heterogeneous samples, rare cell types, cell lineage relationships, mosaicism of somatic tissues, analyses of microbes that cannot be cultured, and disease evolution can all be elucidated through single-cell sequencing. Single-cell sequencing was selected as the method of the year 2013 by Nature Publishing Group.

Genome (DNA) sequencing

Single-cell DNA genome sequencing involves isolating a single cell, amplifying the whole genome or region of interest, constructing sequencing libraries, and then applying next-generation DNA sequencing (for example Illumina, Ion Torrent). Single-cell DNA sequencing has been widely applied in mammalian systems to study normal physiology and disease. Single-cell resolution can uncover the roles of genetic mosaicism or intra-tumor genetic heterogeneity in cancer development or treatment response. In the context of microbiomes, a genome from a single unicellular organism is referred to as a single amplified genome (SAG). Advancements in single-cell DNA sequencing have enabled collecting of genomic data from uncultivated prokaryotic species present in complex microbiomes.  Although SAGs are characterized by low completeness and significant bias, recent computational advances have achieved the assembly of near-complete genomes from composite SAGs. Data obtained from microorganisms might establish processes for culturing in the future. Some of the genome assembly tools used in single cell single-cell sequencing include SPAdes, IDBA-UD, Cortex, and HyDA.

See also

  • Single-cell analysis
  • Single-cell transcriptomics
  • Single cell epigenomics
  • Tcr-seq
  • DNA sequencing
  • Whole genome sequencing
kids search engine
Single-cell sequencing Facts for Kids. Kiddle Encyclopedia.