kids encyclopedia robot

Iñupiaq numerals facts for kids

Kids Encyclopedia Facts

The Iñupiaq language is spoken by the Iñupiat people, who live in Alaska and parts of Canada. Like many languages, Iñupiaq has its own way of counting. What's special about their numbers is that they use a vigesimal system. This means they count in groups of 20, instead of our usual groups of 10 (which is called a decimal system).

Imagine counting on your fingers and toes! That's how a base-20 system works. The Iñupiaq numbers are often written using special symbols called Kaktovik numerals. These symbols were created by students in Kaktovik, Alaska, to make it easier to write Iñupiaq numbers. They match the Iñupiaq words for numbers very well.

How Iñupiaq Numbers Work

The Iñupiaq counting system is based on groups of 20. This is different from the system we use every day, which is based on groups of 10. In Iñupiaq, you'll see numbers built by adding or multiplying by 20.

For example, to say 40, they might say "two twenties." To say 400, they might say "twenty twenties." This makes their number system very logical once you understand the pattern.

Numbers from 0 to 20

The first 20 numbers are the building blocks of the Iñupiaq system. You'll notice some numbers are made by adding or subtracting from 5, 10, or 15. For instance, 7 is "5 plus 2," and 9 is "10 minus 1."

The Kaktovik numerals are a special set of symbols that represent these numbers. They make it easy to write down Iñupiaq numbers, even large ones.

Units (n × 200)
Numeral Morphological
composition
Kaktovik
notation
Hindu-Arabic
notation
kisitchisaġvik 𝋀 0
atausiq 1 𝋁 1
malġuk 2 𝋂 2
piŋasut 3 𝋃 3
sisamat 4 𝋄 4
tallimat 5 𝋅 5
itchaksrat 6 𝋆 6
tallimat malġuk 5 + 2 𝋇 7
tallimat piŋasut 5 + 3 𝋈 8
quliŋŋuġutaiḷaq 10 − 1 𝋉 9
qulit 10 𝋊 10
qulit atausiq 10 + 1 𝋋 11
qulit malġuk 10 + 2 𝋌 12
qulit piŋasut 10 + 3 𝋍 13
akimiaġutaiḷaq 15 − 1 𝋎 14
akimiaq 15 𝋏 15
akimiaq atausiq 15 + 1 𝋐 16
akimiaq malġuk 15 + 2 𝋑 17
akimiaq piŋasut 15 + 3 𝋒 18
iñuiññaġutaiḷaq 20 − 1 𝋓 19
iñuiññaq 20 𝋁𝋀 20
iḷagiññaq 400 𝋁𝋀𝋀 400

Counting by Twenties (n-kipiaq)

Once you get past 20, the Iñupiaq system uses multiples of 20. The suffix -kipiaq means "times 20." So, malġukipiaq means "two times twenty," which is 40. This pattern continues for higher numbers.

n-kipiaq (n × 201)
malġukipiaq 2×20 𝋂𝋀 40
piŋasukipiaq 3×20 𝋃𝋀 60
sisamakipiaq 4×20 𝋄𝋀 80
tallimakipiaq 5×20 𝋅𝋀 100
(tallimakipiaq iñuiññaq) 5×20 + 20 𝋆𝋀 120
(tallimakipiaq sisamakipiaq) 5×20 + 4×20 𝋉𝋀 180
qulikipiaq 10×20 𝋊𝋀 200
akimiakipiaq 15×20 𝋏𝋀 300
iñuiññakipiaq
(= iḷagiññaq)
20×20 𝋁𝋀𝋀 400

Counting by Four Hundreds (n-agliaq)

The next big step in Iñupiaq counting is 400. This is because 400 is 20 times 20 (202). The suffix -agliaq is used for these numbers. So, malġuagliaq means "two times four hundred," which is 800.

n-agliaq (n × 202)
malġuagliaq 2×202 𝋂𝋀𝋀 800
piŋasuagliaq 3×202 𝋃𝋀𝋀 1,200
sisamaagliaq 4×202 𝋄𝋀𝋀 1,600
tallimaagliaq 5×202 𝋅𝋀𝋀 2,000
quliagliaq 10×202 𝋊𝋀𝋀 4,000
akimiagliaq 15×202 𝋏𝋀𝋀 6,000

Counting by Eight Thousands (n-pak)

When you reach 8,000, you're looking at 20 x 20 x 20 (203). The Iñupiaq word for this is -pak. So, atausiqpak means "one times eight thousand," which is 8,000. This shows how the system keeps building on powers of 20.

n-pak (n × 203)
atausiqpak 1×203 𝋁,𝋀𝋀𝋀 8,000
malġuqpak 2×203 𝋂,𝋀𝋀𝋀 16,000
piŋasuqpak 3×203 𝋃,𝋀𝋀𝋀 24,000
sisamaqpak 4×203 𝋄,𝋀𝋀𝋀 32,000
tallimaqpak 5×203 𝋅,𝋀𝋀𝋀 40,000
quliqpak 10×203 𝋊,𝋀𝋀𝋀 80,000
akimiaqpak 15×203 𝋏,𝋀𝋀𝋀 120,000
iñuiññaqpak 20×203 𝋁𝋀,𝋀𝋀𝋀 160,000

Larger Numbers: Beyond Eight Thousands

The Iñupiaq number system continues to grow by multiplying by 20. You'll see combinations like -kipiaq-pak (20 x 203) and -agliaq-pak (202 x 203). This shows how flexible and powerful a base-20 system can be for expressing very large numbers.

n-kipiaq-pak (n × 204)
malġukipiaqpak 2×20×203 𝋂𝋀,𝋀𝋀𝋀 320,000
piŋasukipiaqpak 3×20×203 𝋃𝋀,𝋀𝋀𝋀 480,000
sisamakipiaqpak 4×20×203 𝋄𝋀,𝋀𝋀𝋀 640,000
tallimakipiaqpak 5×20×203 𝋅𝋀,𝋀𝋀𝋀 800,000
qulikipiaqpak 10×20×203 𝋊𝋀,𝋀𝋀𝋀 1,600,000
akimiakipiaqpak 15×20×203 𝋏𝋀,𝋀𝋀𝋀 2,400,000
n-pak (n × 203)
iḷagiññaqpak 400×203 𝋁𝋀𝋀,𝋀𝋀𝋀 3,200,000
n-agliaq-pak (n × 205)
malġuagliaqpak 2×202×203 𝋂𝋀𝋀,𝋀𝋀𝋀 6,400,000
piŋasuagliaqpak 3×202×203 𝋃𝋀𝋀,𝋀𝋀𝋀 9,600,000
sisamaagliaqpak 4×202×203 𝋄𝋀𝋀,𝋀𝋀𝋀 12,800,000
tallimaagliaqpak 5×202×203 𝋅𝋀𝋀,𝋀𝋀𝋀 16,000,000
quliagliaqpak 10×202×203 𝋊𝋀𝋀,𝋀𝋀𝋀 32,000,000
akimiagliaqpak 15×202×203 𝋏𝋀𝋀,𝋀𝋀𝋀 48,000,000
n-pakaippaq (n × 206)
atausiqpakaippaq 1×(203)2 𝋁,𝋀𝋀𝋀,𝋀𝋀𝋀 64,000,000
malġuqpakaippaq 2×(203)2 𝋂,𝋀𝋀𝋀,𝋀𝋀𝋀 128,000,000
piŋasuqpakaippaq 3×(203)2 𝋃,𝋀𝋀𝋀,𝋀𝋀𝋀 192,000,000
sisamaqpakaippaq 4×(203)2 𝋄,𝋀𝋀𝋀,𝋀𝋀𝋀 256,000,000
tallimaqpakaippaq 5×(203)2 𝋅,𝋀𝋀𝋀,𝋀𝋀𝋀 320,000,000
quliqpakaippaq 10×(203)2 𝋊,𝋀𝋀𝋀,𝋀𝋀𝋀 640,000,000
akimiaqpakaippaq 15×(203)2 𝋏,𝋀𝋀𝋀,𝋀𝋀𝋀 960,000,000
iñuiññaqpakaippaq 20×(203)2 𝋁𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 1,280,000,000
n-kipiaq-pakaippaq (n × 207)
malġukipiaqpakaippaq 2×20×(203)2 𝋂𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 2,560,000,000
piŋasukipiaqpakaippaq 3×20×(203)2 𝋃𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 3,840,000,000
sisamakipiaqpakaippaq 4×20×(203)2 𝋄𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 5,120,000,000
tallimakipiaqpakaippaq 5×20×(203)2 𝋅𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 6,400,000,000
qulikipiaqpakaippaq 10×20×(203)2 𝋊𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 12,800,000,000
akimiakipiaqpakaippaq 15×20×(203)2 𝋏𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 19,200,000,000
n-pakaippaq (n × 206)
iḷagiññaqpakaippaq 400×(203)2 𝋁𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 25,600,000,000
n-agliaq-pakaippaq (n × 208)
malġuagliaqpakaippaq 2×202×(203)2 𝋂𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 51,200,000,000
piŋasuagliaqpakaippaq 3×202×(203)2 𝋃𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 76,800,000,000
sisamaagliaqpakaippaq 4×202×(203)2 𝋄𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 102,400,000,000
tallimaagliaqpakaippaq 5×202×(203)2 𝋅𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 128,000,000,000
quliagliaqpakaippaq 10×202×(203)2 𝋊𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 256,000,000,000
akimiagliaqpakaippaq 15×202×(203)2 𝋏𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 384,000,000,000
n-pakpiŋatchaq (n × 209)
atausiqpakpiŋatchaq 1×(203)3 𝋁,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 512,000,000,000
malġuqpakpiŋatchaq 2×(203)3 𝋂,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 1,024,000,000,000
piŋasuqpakpiŋatchaq 3×(203)3 𝋃,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 1,536,000,000,000
sisamaqpakpiŋatchaq 4×(203)3 𝋄,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 2,048,000,000,000
tallimaqpakpiŋatchaq 5×(203)3 𝋅,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 2,560,000,000,000
quliqpakpiŋatchaq 10×(203)3 𝋊,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 5,120,000,000,000
akimiaqpakpiŋatchaq 15×(203)3 𝋏,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 7,680,000,000,000
iñuiññaqpakpiŋatchaq 20×(203)3 𝋁𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 10,240,000,000,000
n-kipiaq-pakpiŋatchaq (n × 2010)
malġukipiaqpakpiŋatchaq 2×20×(203)3 𝋂𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 20,480,000,000,000
piŋasukipiaqpakpiŋatchaq 3×20×(203)3 𝋃𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 30,720,000,000,000
sisamakipiaqpakpiŋatchaq 4×20×(203)3 𝋄𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 40,960,000,000,000
tallimakipiaqpakpiŋatchaq 5×20×(203)3 𝋅𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 51,200,000,000,000
qulikipiaqpakpiŋatchaq 10×20×(203)3 𝋊𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 102,400,000,000,000
akimiakipiaqpakpiŋatchaq 15×20×(203)3 𝋏𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 153,600,000,000,000
n-pakpiŋatchaq (n × 209)
iḷagiññaqpakpiŋatchaq 400×(203)3 𝋁𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 204,800,000,000,000
n-agliaq-pakpiŋatchaq (n × 2011)
malġuagliaqpakpiŋatchaq 2×202×(203)3 𝋂𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 409,600,000,000,000
piŋasuagliaqpakpiŋatchaq 3×202×(203)3 𝋃𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 614,400,000,000,000
sisamaagliaqpakpiŋatchaq 4×202×(203)3 𝋄𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 819,200,000,000,000
tallimaagliaqpakpiŋatchaq 5×202×(203)3 𝋅𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 1,024,000,000,000,000
quliagliaqpakpiŋatchaq 10×202×(203)3 𝋊𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 2,048,000,000,000,000
akimiagliaqpakpiŋatchaq 15×202×(203)3 𝋏𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 3,072,000,000,000,000
iñuiññagliaqpakpiŋatchaq 20×202×(203)3 𝋁,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀,𝋀𝋀𝋀 4,096,000,000,000,000
kids search engine
Iñupiaq numerals Facts for Kids. Kiddle Encyclopedia.