Chemical engineering facts for kids
Chemical engineering is a branch of engineering that applies physical sciences (physics and chemistry), life sciences (microbiology and biochemistry), together with applied mathematics and economics to produce, transform, transport, and properly use chemicals, materials and energy. A chemical engineer designs large-scale processes that convert chemicals, raw materials, living cells, microorganisms and energy into useful forms and products.
Contents
Recent progress
Advancements in computer science found applications designing and managing plants, simplifying calculations and drawings that previously had to be done manually. The completion of the Human Genome Project is also seen as a major development, not only advancing chemical engineering but genetic engineering and genomics as well. Chemical engineering principles were used to produce DNA sequences in large quantities.
Concepts
Chemical engineering involves the application of several principles. Key concepts are presented below.
Chemical reaction engineering
Chemical engineering involves managing plant processes and conditions to ensure optimal plant operation. Chemical reaction engineers construct models for reactor analysis and design using laboratory data and physical parameters, such as chemical thermodynamics, to solve problems and predict reactor performance.
Transport phenomena
Modeling and analysis of transport phenomena is essential for many industrial applications. Transport phenomena involve fluid dynamics, heat transfer and mass transfer, which are governed mainly by momentum transfer, energy transfer and transport of chemical species respectively. Models often involve separate considerations for macroscopic, microscopic and molecular level phenomena. Modeling of transport phenomena therefore requires an understanding of applied mathematics.
Applications and practice
Chemical engineers "develop economic ways of using materials and energy". Chemical engineers use chemistry and engineering to turn raw materials into usable products, such as medicine, petrochemicals and plastics on a large-scale, industrial setting. They are also involved in waste management and research. Both applied and research facets could make extensive use of computers.
Chemical engineers may be involved in industry or university research where they are tasked with designing and performing experiments to create better and safer methods for production, pollution control, and resource conservation. They may be involved in designing and constructing plants as a project engineer. Chemical engineers serving as project engineers use their knowledge in selecting optimal production methods and plant equipment to minimize costs and maximize safety and profitability. After plant construction, chemical engineering project managers may be involved in equipment upgrades, process changes, troubleshooting, and daily operations in either full-time or consulting roles.
Related fields and topics
Today, the field of chemical engineering is a diverse one, covering areas from biotechnology and nanotechnology to mineral processing.
Some new topics in chemical engineering include:
- environmental sanitation at factories (making certain that nature is not hurt by the factories);
- developing types of energy other than those from gas or oil;
- biomedical engineering.
Images for kids
-
Demonstration model of a direct-methanol fuel cell. The actual fuel cell stack is the layered cube shape in the center of the image.
See also
In Spanish: Ingeniería química para niños