Sonar facts for kids
Sonar is a machine that uses underwater sound waves to find other objects in the sea. A sonar can work by sending out sound and listening for echoes (active sonar), like a radar, or by listening for sound made by the object it is trying to find (passive sonar).
The basic parts of an active sonar are:
- the transmitter creates the sound waves.
- the hydrophone or hydrophone array converts the sound waves into electricity.
The first use of passive sonar was in 1490 by Leonardo da Vinci, when he put a tube onto water and listened. Active sonar was first used in 1917 by Paul Langevin. The word SONAR was created during the Second World War as an acronym for Sound Navigation and Ranging. This acronym replaced the British acronym ASDIC. The word is now thought by many people as a regular word, no longer as an acronym.
History
Although some animals (dolphins, bats, some shrews, and others) have used sound for communication and object detection for millions of years, use by humans in the water is initially recorded by Leonardo da Vinci in 1490: a tube inserted into the water was said to be used to detect vessels by placing an ear to the tube.
In the late 19th century an underwater bell was used as an ancillary to lighthouses or lightships to provide warning of hazards.
The use of sound to "echo-locate" underwater in the same way as bats use sound for aerial navigation seems to have been prompted by the Titanic disaster of 1912. The world's first patent for an underwater echo-ranging device was filed at the British Patent Office by English meteorologist Lewis Fry Richardson a month after the sinking of Titanic, and a German physicist Alexander Behm obtained a patent for an echo sounder in 1913.
The Canadian engineer Reginald Fessenden, while working for the Submarine Signal Company in Boston, Massachusetts, built an experimental system beginning in 1912, a system later tested in Boston Harbor, and finally in 1914 from the U.S. Revenue Cutter Miami on the Grand Banks off Newfoundland. In that test, Fessenden demonstrated depth sounding, underwater communications (Morse code) and echo ranging (detecting an iceberg at a 2-mile (3.2 km) range). The "Fessenden oscillator", operated at about 500 Hz frequency, was unable to determine the bearing of the iceberg due to the 3-metre wavelength and the small dimension of the transducer's radiating face (less than 1⁄3 wavelength in diameter). The ten Montreal-built British H-class submarines launched in 1915 were equipped with Fessenden oscillators.
During World War I the need to detect submarines prompted more research into the use of sound. The British made early use of underwater listening devices called hydrophones, while the French physicist Paul Langevin, working with a Russian immigrant electrical engineer Constantin Chilowsky, worked on the development of active sound devices for detecting submarines in 1915. Although piezoelectric and magnetostrictive transducers later superseded the electrostatic transducers they used, this work influenced future designs. Lightweight sound-sensitive plastic film and fibre optics have been used for hydrophones, while Terfenol-D and PMN (lead magnesium niobate) have been developed for projectors.
Ecological impact
Effect on marine mammals
Research has shown that use of active sonar can lead to mass strandings of marine mammals. Beaked whales, the most common casualty of the strandings, have been shown to be highly sensitive to mid-frequency active sonar. Other marine mammals such as the blue whale also flee from the source of the sonar, while naval activity was suggested to be the most probable cause of a mass stranding of dolphins. The US Navy, which part-funded some of the studies, said that the findings only showed behavioural responses to sonar, not actual harm, but they "will evaluate the effectiveness of [their] marine mammal protective measures in light of new research findings". A 2008 US Supreme Court ruling on the use of sonar by the US Navy noted that there had been no cases where sonar had been conclusively shown to have harmed or killed a marine mammal.
Some marine animals, such as whales and dolphins, use echolocation systems, sometimes called biosonar to locate predators and prey. Research on the effects of sonar on blue whales in the Southern California Bight shows that mid-frequency sonar use disrupts the whales' feeding behavior. This indicates that sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health.
A review of evidence on the mass strandings of beaked whale linked to naval exercises where sonar was used was published in 2019. It concluded that the effects of mid-frequency active sonar are strongest on Cuvier's beaked whales but vary among individuals or populations. The review suggested the strength of response of individual animals may depend on whether they had prior exposure to sonar, and that symptoms of decompression sickness have been found in stranded whales that may be a result of such response to sonar. It noted that in the Canary Islands where multiple strandings had been previously reported, no more mass strandings had occurred once naval exercises during which sonar was used were banned in the area, and recommended that the ban be extended to other areas where mass strandings continue to occur.
Effect on fish
High-intensity sonar sounds can create a small temporary shift in the hearing threshold of some fish.
Images for kids
-
Sonar image of the Soviet Navy minesweeper T-297, formerly the Latvian Virsaitis, which was shipwrecked on 3 December 1941 in the Gulf of Finland
-
AN/AQS-13 Dipping sonar deployed from an H-3 Sea King
See also
In Spanish: Sonar para niños