Prunus facts for kids
Quick facts for kids Prunus |
|
---|---|
Prunus cerasus (sour cherry) in bloom | |
Scientific classification | |
Kingdom: | |
Division: | |
Class: | |
Order: | |
Family: | |
Subfamily: | |
Genus: |
Prunus
|
Synonyms | |
|
Prunus is a genus of plants in the family Rosaceae. It includes plums, peaches, almonds, apricots and cherries.
Contents
Benefits to human health
People are often encouraged to consume many fruits because they are rich in a variety of nutrients and phytochemicals that are supposedly beneficial to human health. The fruits of Prunus often contain many phytochemicals and antioxidants. These compounds have properties that have been linked to preventing different diseases and disorders. Research suggests that the consumption of these fruits reduces the risk of developing diseases such as cardiovascular diseases, cancer, diabetes, and other age-related declines. Many factors can affect the levels of bioactive compounds in the different fruits of the genus Prunus, including the environment, season, processing methods, orchard operations, and postharvest management.
Cherries
Cherries contain many different phenolic compounds and anthocyanins, which are indicators of being rich in antioxidants. Recent research has linked the phenolic compounds of the sweet cherry (Prunus avium) with antitumor properties.
Reactive oxygen species (ROS) include superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen; they are the byproducts of metabolism. High levels of ROS lead to oxidative stress, which causes damage to lipids, proteins, and nucleic acids. The oxidative damage results in cell death, which ultimately leads to numerous diseases and disorders. Antioxidants act as a defense mechanism against the oxidative stress. They are used to remove the free radicals in a living system that are generated as ROS. Some of those antioxidants include gutathione S-transferase, glutathione peroxidase, superoxide dismutase, and catalase. The antioxidants present in cherry extracts act as inhibitors of the free radicals. However, the DNA and proteins can be damaged when an imbalance occurs in the level of free radicals and the antioxidants. When not enough antioxidants are available to remove the free radicals, many diseases can occur, such as cancers, cardiovascular diseases, Parkinson's disease, etc. Recent studies have shown that using natural antioxidants as a supplement in chemotherapy can decrease the amount of oxidative damage. Some of these natural antioxidants include ascorbic acid, tocopherol, and epigallocatechin gallate; they can be found in certain cherry extracts.
Almonds
Similar to cherries, strawberries, and raspberries, almonds are also rich in phenolics. Almonds have a high oxygen radical absorbing capacity (ORAC), which is another indicator of being rich in antioxidants. As stated before, high levels of free radicals are harmful, thus having the capacity to absorb those radicals is greatly beneficial. The bioactive compounds, polyphenols and anthocyanins, found in berries and cherries are also present in almonds. Almonds also contain nonflavonoid and flavonoid compounds, which contribute to the antioxidant properties of almonds. Flavonoids are a group of structurally related compounds that are arranged in a specific manner and can be found in all vascular plants on land. They also contribute to the antioxidant properties of almonds. Some of the nonflavonoid compounds present are protocatechuic, vanillic, and p-hydroxybenzoic acids. Flavonoid compounds that can be found in the skin of the almond are flavanols, dihydroflavonols, and flavanones.
Plums
Of all of the different species of stone fruits, plums are the richest in antioxidants and phenolic compounds. The total antioxidant capacity (TAC) varies within each fruit, but in plums, TAC is much higher in the skin than in the flesh of the fruit.
Apricots
Apricots are high in carotenoids, which play a key role in light absorption during development. Carotenoids are the pigments that give the pulp and peel of apricots and other Prunus fruits their yellow and orange colors. Moreover, it is an essential precursor for vitamin A, which is especially important for vision and the immune system in humans. Moreover, these fruits are quite rich in phenolic substances, including catechin, epicatechin, p-coumaric acid, caffeic acid, and ferulic acid.
Peaches and nectarines
Similar to the plum, peaches and nectarines also have higher TAC in the skin than in the flesh. They also contain moderate levels of carotenoids and ascorbic acid. Peaches and nectarines are orange and yellow in color, which can be attributed to the carotenoids present. Ascorbic acid is important in hydroxylation reactions, such as collagen synthesis, de novo synthesis of bone and cartilage, and wound healing. Ascorbic acid is vitamin C, which is essential for repairing tissues and absorbing iron.
Pests and diseases
Various Prunus species are winter hosts of the Damson-hop aphid, Phorodon humuli, which is destructive to hops Humulus lupulus just at the time of their maturity, so plum trees should not be grown in the vicinity of hop fields.
Corking is the drying or withering of fruit tissue. In stone fruit, it is often caused by a lack of boron and/or calcium.
Gummosis is a nonspecific condition of stone fruits (peach, nectarine, plum, and cherry) in which gum is exuded and deposited on the bark of trees. Gum is produced in response to any type of wound – insect, mechanical injury, or disease.
Images for kids
-
Japanese cherry (Prunus serrulata) blossoms
-
Tibetan cherry (Prunus serrula) bark
-
Black cherry (Prunus serotina) in bloom
-
The development sequence of a nectarine (P. persica) over a 7.5-month period, from bud formation in early winter to fruit ripening in midsummer
See also
In Spanish: Prunus para niños