Antoine Lavoisier facts for kids
Antoine-Laurent de Lavoisier (26 August 1743 – 8 May 1794) was a French nobleman, chemist and biologist. He is often called the "Father of Modern Chemistry". His work is an important part of the histories of chemistry and biology. It also contributed to the beginnings of atomic theory. He was the first scientist to recognise and name the elements hydrogen and oxygen. He was executed, as were hundreds of other nobles, during the French Revolution.
Contents
- Biography
- Contributions to chemistry
- Awards and honours
- Images for kids
- See also
Biography
Early life and education
Antoine-Laurent Lavoisier was born to a wealthy family of the nobility in Paris on 26 August 1743. The son of an attorney at the Parlement of Paris, he inherited a large fortune at the age of five upon the death of his mother. Lavoisier began his schooling at the Collège des Quatre-Nations, University of Paris (also known as the Collège Mazarin) in Paris in 1754 at the age of 11. In his last two years (1760–1761) at the school, his scientific interests were aroused, and he studied chemistry, botany, astronomy, and mathematics. In the philosophy class he came under the tutelage of Abbé Nicolas Louis de Lacaille, a distinguished mathematician and observational astronomer who imbued the young Lavoisier with an interest in meteorological observation, an enthusiasm which never left him. Lavoisier entered the school of law, where he received a bachelor's degree in 1763 and a licentiate in 1764. Lavoisier received a law degree and was admitted to the bar, but never practiced as a lawyer. However, he continued his scientific education in his spare time.
Early scientific work
Lavoisier's education was filled with the ideals of the French Enlightenment of the time, and he was fascinated by Pierre Macquer's dictionary of chemistry. He attended lectures in the natural sciences. Lavoisier's devotion and passion for chemistry were largely influenced by Étienne Condillac, a prominent French scholar of the 18th century. His first chemical publication appeared in 1764. From 1763 to 1767, he studied geology under Jean-Étienne Guettard. In collaboration with Guettard, Lavoisier worked on a geological survey of Alsace-Lorraine in June 1767. In 1764 he read his first paper to the French Academy of Sciences, France's most elite scientific society, on the chemical and physical properties of gypsum (hydrated calcium sulfate), and in 1766 he was awarded a gold medal by the King for an essay on the problems of urban street lighting. In 1768 Lavoisier received a provisional appointment to the Academy of Sciences. In 1769, he worked on the first geological map of France.
Lavoisier as a social reformer
Research benefitting the public good
While Lavoisier is commonly known for his contributions to the sciences, he also dedicated a significant portion of his fortune and work toward benefitting the public. Lavoisier was a humanitarian—he cared deeply about the people in his country and often concerned himself with improving the livelihood of the population by agriculture, industry, and the sciences. The first instance of this occurred in 1765, when he submitted an essay on improving urban street lighting to the French Academy of Sciences.
Three years later in 1768, he focused on a new project to design an aqueduct. The goal was to bring water from the river Yvette into Paris so that the citizens could have clean drinking water. But, since the construction never commenced, he instead turned his focus to purifying the water from the Seine. This was the project that interested Lavoisier in the chemistry of water and public sanitation duties.
Additionally, he was interested in air quality and spent some time studying the health risks associated with gunpowder's effect on the air. In 1772, he performed a study on how to reconstruct the Hôtel-Dieu hospital, after it had been damaged by fire, in a way that would allow proper ventilation and clean air throughout.
At the time, the prisons in Paris were known to be largely unlivable and the prisoners' treatment inhumane. Lavoisier took part in investigations in 1780 (and again in 1791) on the hygiene in prisons and had made suggestions to improve living conditions, suggestions which were largely ignored.
Once a part of the Academy, Lavoisier also held his own competitions to push the direction of research towards bettering the public and his own work.
Sponsorship of the sciences
Lavoisier had a vision of public education having roots in "scientific sociability" and philanthropy.
Lavoisier gained a vast majority of his income through buying stock in the General Farm, which allowed him to work on science full-time, live comfortably, and allowed him to contribute financially to better the community. (It would also contribute to his demise during the Reign of Terror many years later.)
It was very difficult to secure public funding for the sciences at the time, and additionally not very financially profitable for the average scientist, so Lavoisier used his wealth to open a very expensive and sophisticated laboratory in France so that aspiring scientists could study without the barriers of securing funding for their research.
He also pushed for public education in the sciences. He founded two organizations, Lycée [fr] and Musée des Arts et Métiers, which were created to serve as educational tools for the public. Funded by the wealthy and noble, the Lycée regularly taught courses to the public beginning in 1793.
Ferme générale and marriage
At the age of 26, around the time he was elected to the Academy of Sciences, Lavoisier bought a share in the Ferme générale, a tax farming financial company which advanced the estimated tax revenue to the royal government in return for the right to collect the taxes. On behalf of the Ferme générale Lavoisier commissioned the building of a wall around Paris so that customs duties could be collected from those transporting goods into and out of the city. His participation in the collection of its taxes did not help his reputation when the Reign of Terror began in France, as taxes and poor government reform were the primary motivators during the French Revolution.
Lavoisier consolidated his social and economic position when, in 1771 at age 28, he married Marie-Anne Pierrette Paulze, the daughter of a senior member of the Ferme générale. She was to play an important part in Lavoisier's scientific career—notably, she translated English documents for him, including Richard Kirwan's Essay on Phlogiston and Joseph Priestley's research. In addition, she assisted him in the laboratory and created many sketches and carved engravings of the laboratory instruments used by Lavoisier and his colleagues for their scientific works. Madame Lavoisier edited and published Antoine's memoirs (whether any English translations of those memoirs have survived is unknown as of today) and hosted parties at which eminent scientists discussed ideas and problems related to chemistry.
A portrait of Antoine and Marie-Anne Lavoisier was painted by the famed artist Jacques-Louis David. Completed in 1788 on the eve of the Revolution, the painting was denied a customary public display at the Paris Salon for fear that it might inflame anti-aristocratic passions.
For three years following his entry into the Ferme générale, Lavoisier's scientific activity diminished somewhat, for much of his time was taken up with official Ferme générale business. He did, however, present one important memoir to the Academy of Sciences during this period, on the supposed conversion of water into earth by evaporation. By a very precise quantitative experiment, Lavoisier showed that the "earthy" sediment produced after long-continued reflux heating of water in a glass vessel was not due to a conversion of the water into earth but rather to the gradual disintegration of the inside of the glass vessel produced by the boiling water. He also attempted to introduce reforms in the French monetary and taxation system to help the peasants.
Adulteration of tobacco
The Farmers General held a monopoly of the production, import and sale of tobacco in France, and the taxes they levied on tobacco brought revenues of 30 million livres a year. This revenue began to fall because of a growing black market in tobacco that was smuggled and adulterated, most commonly with ash and water. Lavoisier devised a method of checking whether ash had been mixed in with tobacco: "When a spirit of vitriol, aqua fortis or some other acid solution is poured on ash, there is an immediate very intense effervescent reaction, accompanied by an easily detected noise." Lavoisier also noticed that the addition of a small amount of ash improved the flavour of tobacco. Of one vendor selling adulterated goods, he wrote "His tobacco enjoys a very good reputation in the province... the very small proportion of ash that is added gives it a particularly pungent flavour that consumers look for. Perhaps the Farm could gain some advantage by adding a bit of this liquid mixture when the tobacco is fabricated." Lavoisier also found that while adding a lot of water to bulk the tobacco up would cause it to ferment and smell bad, the addition of a very small amount improved the product. Thereafter the factories of the Farmers General added, as he recommended, a consistent 6.3% of water by volume to the tobacco they processed. To allow for this addition, the Farmers General delivered to retailers seventeen ounces of tobacco while only charging for sixteen. To ensure that only these authorised amounts were added, and to exclude the black market, Lavoisier saw to it that a watertight system of checks, accounts, supervision and testing made it very difficult for retailers to source contraband tobacco or to improve their profits by bulking it up. He was energetic and rigorous in implementing this, and the systems he introduced were deeply unpopular with the tobacco retailers across the country. This unpopularity was to have consequences for him during the French Revolution.
Royal Commission on Agriculture
Lavoisier urged the establishment of a Royal Commission on Agriculture. He then served as its Secretary and spent considerable sums of his own money in order to improve the agricultural yields in the Sologne, an area where farmland was of poor quality. The humidity of the region often led to a blight of the rye harvest, causing outbreaks of ergotism among the population. In 1788 Lavoisier presented a report to the Commission detailing ten years of efforts on his experimental farm to introduce new crops and types of livestock. His conclusion was that despite the possibilities of agricultural reforms, the tax system left tenant farmers with so little that it was unrealistic to expect them to change their traditional practices.
Gunpowder Commission
Lavoisier's researches on combustion were carried out in the midst of a very busy schedule of public and private duties, especially in connection with the Ferme Générale. There were also innumerable reports for and committees of the Academy of Sciences to investigate specific problems on order of the royal government. Lavoisier, whose organizing skills were outstanding, frequently landed the task of writing up such official reports. In 1775 he was made one of four commissioners of gunpowder appointed to replace a private company, similar to the Ferme Générale, which had proved unsatisfactory in supplying France with its munitions requirements. As a result of his efforts, both the quantity and quality of French gunpowder greatly improved, and it became a source of revenue for the government. His appointment to the Gunpowder Commission brought one great benefit to Lavoisier's scientific career as well. As a commissioner, he enjoyed both a house and a laboratory in the Royal Arsenal. Here he lived and worked between 1775 and 1792.
Lavoisier was a formative influence in the formation of the Du Pont gunpowder business because he trained Éleuthère Irénée du Pont, its founder, on gunpowder-making in France; the latter said that the Du Pont gunpowder mills "would never have been started but for his kindness to me."
During the Revolution
In June 1791, Lavoisier made a loan of 71,000 livres to Pierre Samuel du Pont de Nemours to buy a printing works so that du Pont could publish a newspaper, La Correspondance Patriotique. The plan was for this to include both reports of debates in the National Constituent Assembly as well as papers from the Academy of Sciences. The revolution quickly disrupted the elder du Pont's first newspaper, but his son E.I. du Pont soon launched Le Republicain and published Lavoisier's latest chemistry texts.
Lavoisier also chaired the commission set up to establish a uniform system of weights and measures which in March 1791 recommended the adoption of the metric system. The new system of weights and measures was adopted by the Convention on 1 August 1793. Lavoisier was one of the 27 Farmers General who, by order of the Convention, were all to be detained. Although temporarily going into hiding, on 30 November 1793 he handed himself into the Port Royal convent for questioning. He claimed he had not operated on this commission for many years, having instead devoted himself to science.
Lavoisier himself was removed from the commission on weights and measures on 23 December 1793, together with mathematician Pierre-Simon Laplace and several other members, for political reasons.
One of his last major works was a proposal to the National Convention for the reform of French education. He also intervened on behalf of a number of foreign-born scientists including mathematician Joseph Louis Lagrange, helping to exempt them from a mandate stripping all foreigners of possessions and freedom.
Final days and execution
As the French Revolution gained momentum, attacks mounted on the deeply unpopular Ferme générale, and it was eventually abolished in March 1791. In 1792 Lavoisier was forced to resign from his post on the Gunpowder Commission and to move from his house and laboratory at the Royal Arsenal. On 8 August 1793, all the learned societies, including the Academy of Sciences, were suppressed at the request of Abbé Grégoire.
On 24 November 1793, the arrest of all the former tax farmers was ordered. Lavoisier and the other Farmers General faced nine accusations of defrauding the state of money owed to it, and of adding water to tobacco before selling it. Lavoisier drafted their defense, refuting the financial accusations, reminding the court of how they had maintained a consistently high quality of tobacco. The court, however, was inclined to believe that by condemning them and seizing the goods of the Farmers General, it would recover huge sums for the state. Lavoisier was convicted and guillotined on 8 May 1794 in Paris, at the age of 50, along with his 27 co-defendants.
According to popular legend, the appeal to spare his life, in order that he could continue his experiments, was cut short by the judge, Coffinhal: "La République n'a pas besoin de savants ni de chimistes; le cours de la justice ne peut être suspendu." ("The Republic needs neither scholars nor chemists; the course of justice cannot be delayed.") The judge Coffinhal himself would be executed less than three months later, in the wake of the Thermidorian reaction.
Lavoisier's importance to science was expressed by Lagrange who lamented the beheading by saying: "Il ne leur a fallu qu'un moment pour faire tomber cette tête, et cent années peut-être ne suffiront pas pour en reproduire une semblable." ("It took them only an instant to cut off this head, and one hundred years might not suffice to reproduce its like.")
Exoneration
A year and a half after his execution, Lavoisier was completely exonerated by the French government. During the White Terror, his belongings were delivered to his widow. A brief note was included, reading "To the widow of Lavoisier, who was falsely convicted".
Contributions to chemistry
During his career, Lavoisier brought major changes to the study of chemistry. Much of his research was done on combustion. He is the person who explained combustion by oxidation. To prove this, Lavoisier studied the air. In order to do this, in 1776, he burned mercury in an enclosed vase. His conclusion: the air is a combination of oxygen and is not a chemical element.
He also discovered the law of conservation of mass that is nothing is lost, nothing is created, everything is transformed. It says that the mass of the final products of a chemical reaction is the same as the reactants’ ones. Today, this principle is the basis of modern chemistry.
Lavoisier, together with L. B. Guyton de Morveau, Claude-Louis Berthollet and Antoine François de Fourcroy, created the first system of chemical nomenclature in the 1780s.
Overall, his contributions are considered the most important in advancing chemistry to the level reached in physics and mathematics during the 18th century.
Awards and honours
During his lifetime, Lavoisier was awarded a gold medal by the King of France for his work on urban street lighting (1766), and was appointed to the French Academy of Sciences (1768). He was elected as a member of the American Philosophical Society in 1775.
Lavoisier's work was recognized as an International Historic Chemical Landmark by the American Chemical Society, Académie des sciences de L'institut de France and the Société Chimique de France in 1999. Antoine Laurent Lavoisier's Louis 1788 publication entitled Méthode de Nomenclature Chimique, published with colleagues Louis-Bernard Guyton de Morveau, Claude Louis Berthollet, and Antoine François, comte de Fourcroy, was honored by a Citation for Chemical Breakthrough Award from the Division of History of Chemistry of the American Chemical Society, presented at the Académie des Sciences (Paris) in 2015.
A number of Lavoisier Medals have been named and given in Lavoisier's honour, by organizations including the Société chimique de France, the International Society for Biological Calorimetry, and the DuPont company He is also commemorated by the Franklin-Lavoisier Prize, marking the friendship of Antoine-Laurent Lavoisier and Benjamin Franklin. The prize, which includes a medal, is given jointly by the Fondation de la Maison de la Chimie in Paris, France and the Science History Institute in Philadelphia, PA, USA.
Images for kids
-
Joseph Priestley, an English chemist known for isolating oxygen, which he termed "dephlogisticated air"
-
Antoine-Laurent Lavoisier by Jules Dalou 1866
See also
In Spanish: Antoine Lavoisier para niños