Internal combustion engine facts for kids
An internal combustion engine is an engine in which combustion, or the burning of fuel, occurs on the inside. There are many kinds but the term often means the machine that Niklaus Otto invented. In this kind, fire makes pressure increase inside a sealed box (cylinder). The pressure pushes a rod which is attached to a wheel. The rod pushes the wheel and makes it spin around. The spinning wheel is attached to other wheels, such as four car wheels, with a belt or a chain. The engine is very strong and can make all the wheels move.
Engines need oil to make them slippery or the moving parts would grind together and stick. Parts of a car engine are measured to 0.01 of a millimeter and some engine parts fit together very tightly.
Internal differs from external combustion where the fire is outside the engine, such as a steam engine.
Most road vehicles use the internal combustion engine today, and most of those use the four-stroke engine. Another type of internal combustion engine is the Wankel engine.
Gas turbines are internal combustion engines that work continuously, not by strokes. Rocket engines and guns are internal combustion engines but they do not turn wheels.
Contents
History
Various scientists and engineers contributed to the development of internal combustion engines. In 1791, John Barber developed the gas turbine. In 1794 Thomas Mead patented a gas engine. Also in 1794, Robert Street patented an internal combustion engine, which was also the first to use liquid fuel, and built an engine around that time. In 1798, John Stevens built the first American internal combustion engine. In 1807, French engineers Nicéphore Niépce (who went on to invent photography) and Claude Niépce ran a prototype internal combustion engine, using controlled dust explosions, the Pyréolophore, which was granted a patent by Napoleon Bonaparte. This engine powered a boat on the Saône river in France. In the same year, Swiss engineer François Isaac de Rivaz invented a hydrogen-based internal combustion engine and powered the engine by electric spark. In 1808, De Rivaz fitted his invention to a primitive working vehicle – "the world's first internal combustion powered automobile". In 1823, Samuel Brown patented the first internal combustion engine to be applied industrially.
In 1854 in the UK, the Italian inventors Eugenio Barsanti and Felice Matteucci obtained the certification: "Obtaining Motive Power by the Explosion of Gases". In 1857 the Great Seal Patent Office conceded them patent No.1655 for the invention of an "Improved Apparatus for Obtaining Motive Power from Gases". Barsanti and Matteucci obtained other patents for the same invention in France, Belgium and Piedmont between 1857 and 1859. In 1860, Belgian engineer Jean Joseph Etienne Lenoir produced a gas-fired internal combustion engine. In 1864, Nicolaus Otto patented the first atmospheric gas engine. In 1872, American George Brayton invented the first commercial liquid-fueled internal combustion engine. In 1876, Nicolaus Otto began working with Gottlieb Daimler and Wilhelm Maybach, patented the compressed charge, four-cycle engine. In 1879, Karl Benz patented a reliable two-stroke gasoline engine. Later, in 1886, Benz began the first commercial production of motor vehicles with an internal combustion engine, in which a three-wheeled, four-cycle engine and chassis formed a single unit. In 1892, Rudolf Diesel developed the first compressed charge, compression ignition engine. In 1926, Robert Goddard launched the first liquid-fueled rocket. In 1939, the Heinkel He 178 became the world's first jet aircraft.
Etymology
At one time, the word engine (via Old French, from Latin ingenium, "ability") meant any piece of machinery—a sense that persists in expressions such as siege engine. A "motor" (from Latin motor, "mover") is any machine that produces mechanical power. Traditionally, electric motors are not referred to as "engines"; however, combustion engines are often referred to as "motors". (An electric engine refers to a locomotive operated by electricity.)
In boating, an internal combustion engine that is installed in the hull is referred to as an engine, but the engines that sit on the transom are referred to as motors.
Applications
Reciprocating piston engines are by far the most common power source for land and water vehicles, including automobiles, motorcycles, ships and to a lesser extent, locomotives (some are electrical but most use diesel engines). Rotary engines of the Wankel design are used in some automobiles, aircraft and motorcycles. These are collectively known as internal-combustion-engine vehicles (ICEV).
Where high power-to-weight ratios are required, internal combustion engines appear in the form of combustion turbines, or sometimes Wankel engines. Powered aircraft typically use an ICE which may be a reciprocating engine. Airplanes can instead use jet engines and helicopters can instead employ turboshafts; both of which are types of turbines. In addition to providing propulsion, airliners may employ a separate ICE as an auxiliary power unit. Wankel engines are fitted to many unmanned aerial vehicles.
ICEs drive large electric generators that power electrical grids. They are found in the form of combustion turbines with a typical electrical output in the range of some 100 MW. Combined cycle power plants use the high temperature exhaust to boil and superheat water steam to run a steam turbine. Thus, the efficiency is higher because more energy is extracted from the fuel than what could be extracted by the combustion engine alone. Combined cycle power plants achieve efficiencies in the range of 50–60%. In a smaller scale, stationary engines like gas engines or diesel generators are used for backup or for providing electrical power to areas not connected to an electric grid.
Small engines (usually 2‐stroke gasoline/petrol engines) are a common power source for lawnmowers, string trimmers, chain saws, leafblowers, pressure washers, snowmobiles, jet skis, outboard motors, mopeds, and motorcycles.
Images for kids
-
The Wankel rotary cycle. The shaft turns three times for each rotation of the rotor around the lobe and once for each orbital revolution around the eccentric shaft.
See also
In Spanish: Motor de combustión interna para niños