kids encyclopedia robot

Sperm whale facts for kids

Kids Encyclopedia Facts
(Redirected from Physeteroidea)
Quick facts for kids
Sperm whale
Temporal range: Pliocene – Recent
Mother and baby sperm whale.jpg
Conservation status

Endangered (IUCN 3.1)(Mediterranean)
Scientific classification
Sperm whale distribution (Pacific equirectangular).jpg
Major sperm whale grounds
  • Physeter catodon Linnaeus, 1758
  • Physeter microps Linnaeus, 1758
  • Physeter tursio Linnaeus, 1758
  • Physeter australasianus Desmoulins, 1822

The sperm whale (Physeter catodon) is the largest toothed whale. It has the biggest head of any animal. The head can be about 20 feet (6.1 m) long, and is about one-third of the whale's body. Its lower jaw is small and contains its huge, conical teeth (which fit into sockets in the upper jaw).


External appearance

Average sizes
Length Weight
Male 16 metres (52 ft) 41 tonnes (45 short tons)
Female 11 metres (36 ft) 14 tonnes (15 short tons)
Newborn 4 metres (13 ft) 1 tonne (1.1 short tons)

The sperm whale is the largest toothed whale, with adult males measuring up to 20.7 metres (68 ft) long and weighing up to 83 tonnes (82 long tons; 91 short tons). By contrast, the second largest toothed whale (Baird's beaked whale) measures 12.8 metres (42 ft) and weighs up to 14 tonnes (15 short tons). The Nantucket Whaling Museum has a 5.5 metres (18 ft)-long jawbone. The museum claims that this individual was 24 metres (80 ft) long; the whale that sank the Essex (one of the incidents behind Moby-Dick) was claimed to be 26 metres (85 ft). A similar size is reported from a jawbone from the British Natural History Museum. In 1853, one sperm whale was reported at 62 feet (19 m) in length with a head measuring 20 feet (6.1 m). An individual measuring 20.7 metres (68 ft) was reported from a Soviet whaling fleet near the Kuril Islands in 1950. It was estimated to weigh 83 tonnes (82 long tons; 91 short tons). There is disagreement on the claims of adult males approaching or exceeding 24 metres (79 ft) in length.

Extensive whaling may have decreased their size, as males were highly sought, primarily after World War II. Today, males do not usually exceed 18.3 metres (60 ft) in length or 51,000 kilograms (50 long tons; 56 short tons) in weight. Another view holds that exploitation by overwhaling had virtually no effect on the size of the bull sperm whales, and their size may have actually increased in current times on the basis of density dependent effects. Old males taken at Solander Islands were recorded to be extremely large and unusually rich in blubbers.

It is among the most sexually dimorphic of all cetaceans. At birth both sexes are about the same size, but mature males are typically 30% to 50% longer and three times as massive as females.

Sperm whale blowhole Vincze
Unusual among cetaceans, the sperm whale's blowhole is highly skewed to the left side of the head.

The sperm whale's unique body is unlikely to be confused with any other species. The sperm whale's distinctive shape comes from its very large, block-shaped head, which can be one-quarter to one-third of the animal's length. The S-shaped blowhole is located very close to the front of the head and shifted to the whale's left. This gives rise to a distinctive bushy, forward-angled spray.

The sperm whale's flukes (tail lobes) are triangular and very thick. Proportionally, they are larger than that of any other cetacean, and are very flexible. The whale lifts its flukes high out of the water as it begins a feeding dive. It has a series of ridges on the back's caudal third instead of a dorsal fin. The largest ridge was called the 'hump' by whalers, and can be mistaken for a dorsal fin because of its shape and size.

In contrast to the smooth skin of most large whales, its back skin is usually wrinkly and has been likened to a prune by whale-watching enthusiasts. Albinos have been reported.


Physeter macrocephalus - skeleton
A sperm whale skeleton

The ribs are bound to the spine by flexible cartilage, which allows the ribcage to collapse rather than snap under high pressure. While sperm whales are well adapted to diving, repeated dives to great depths have long-term effects. Bones show the same pitting that signals decompression sickness in humans. Older skeletons showed the most extensive pitting, whereas calves showed no damage. This damage may indicate that sperm whales are susceptible to decompression sickness, and sudden surfacing could be lethal to them.

Like that of all cetaceans, the spine of the sperm whale has reduced zygapophysial joints, of which the remnants are modified and are positioned higher on the vertebral dorsal spinous process, hugging it laterally, to prevent extensive lateral bending and facilitate more dorso-ventral bending. These evolutionary modifications make the spine more flexible but weaker than the spines of terrestrial vertebrates.

Like that of other toothed whales, the skull of the sperm whale is asymmetrical so as to aid echolocation. Sound waves that strike the whale from different directions will not be channeled in the same way. Within the basin of the cranium, the openings of the bony narial tubes (from which the nasal passages spring) are skewed towards the left side of the skull.

Jaws and teeth

Sperm whale tooth
Sperm whale tooth
Dirk Claesen - Sperm Whale
The lower jaw is long and narrow. The teeth fit into sockets along the upper jaw.

The sperm whale's lower jaw is very narrow and underslung. The sperm whale has 18 to 26 teeth on each side of its lower jaw which fit into sockets in the upper jaw. The teeth are cone-shaped and weigh up to 1 kilogram (2.2 lb) each. The teeth are functional, but do not appear to be necessary for capturing or eating squid, as well-fed animals have been found without teeth or even with deformed jaws. One hypothesis is that the teeth are used in aggression between males. Mature males often show scars which seem to be caused by the teeth. Rudimentary teeth are also present in the upper jaw, but these rarely emerge into the mouth. Analyzing the teeth is the preferred method for determining a whale's age. Like the age-rings in a tree, the teeth build distinct layers of cementum and dentine as they grow.


Preserved sperm whale brain
The sperm whale's brain is the largest in the world, five times heavier than a human's.

The sperm whale brain is the largest known of any modern or extinct animal, weighing on average about 7.8 kilograms (17 lb), more than five times heavier than a human's, and has a volume of about 8,000 cm3. Although larger brains generally correlate with higher intelligence, it is not the only factor. Elephants and dolphins also have larger brains than humans. The sperm whale has a lower encephalization quotient than many other whale and dolphin species, lower than that of non-human anthropoid apes, and much lower than humans'.

The sperm whale's cerebrum is the largest in all mammalia, both in absolute and relative terms. The olfactory system is reduced, suggesting that the sperm whale has a poor sense of taste and smell. By contrast, the auditory system is enlarged. The pyramidal tract is poorly developed, reflecting the reduction of its limbs.

Biological systems

The sperm whale respiratory system has adapted to cope with drastic pressure changes when diving. The flexible ribcage allows lung collapse, reducing nitrogen intake, and metabolism can decrease to conserve oxygen. Between dives, the sperm whale surfaces to breathe for about eight minutes before diving again. Odontoceti (toothed whales) breathe air at the surface through a single, S-shaped blowhole, which is extremely skewed to the left. Sperm whales spout (breathe) 3–5 times per minute at rest, increasing to 6–7 times per minute after a dive. The blow is a noisy, single stream that rises up to 2 metres (6.6 ft) or more above the surface and points forward and left at a 45° angle. On average, females and juveniles blow every 12.5 seconds before dives, while large males blow every 17.5 seconds before dives. A sperm whale killed 160 km (100 mi) south of Durban, South Africa, after a 1-hour, 50-minute dive was found with two dogfish (Scymnodon sp.), usually found at the sea floor, in its belly.

The sperm whale has the longest intestinal system in the world, exceeding 300 m in larger specimens. Similar to ruminants the sperm whale has a four-chambered stomach. The first secretes no gastric juices and has very thick muscular walls to crush the food (since whales cannot chew) and resist the claw and sucker attacks of swallowed squid. The second chamber is larger and is where digestion takes place. Undigested squid beaks accumulate in the second chamber – as many as 18,000 have been found in some dissected specimens. Most squid beaks are vomited by the whale, but some occasionally make it to the hindgut. Such beaks precipitate the formation of ambergris.

Sperm whale fetus arterial system
The arterial system of a sperm whale foetus

In 1959, the heart of a 22 metric-ton (24 short-ton) male taken by whalers was measured to be 116 kilograms (256 lb), about 0.5% of its total mass. The circulatory system has a number of specific adaptations for the aquatic environment. The diameter of the aortic arch increases as it leaves the heart. This bulbous expansion acts as a windkessel, ensuring a steady blood flow as the heart rate slows during diving. The arteries that leave the aortic arch are positioned symmetrically. There is no costocervical artery. There is no direct connection between the internal carotid artery and the vessels of the brain. Their circulatory system has adapted to dive at great depths, as much as 2,250 metres (7,382 ft). Myoglobin, which stores oxygen in muscle tissue, is much more abundant than in terrestrial animals. The blood has a high density of red blood cells, which contain oxygen-carrying haemoglobin. The oxygenated blood can be directed towards only the brain and other essential organs when oxygen levels deplete. The spermaceti organ may also play a role by adjusting buoyancy (see below). The arterial retia mirabilia are extraordinarily well-developed. The complex arterial retia mirabilia of the sperm whale are more extensive and larger than those of any other cetacean.


Spermaceti organ and melon

Sperm whale head anatomy (transverse + sagittal)
Anatomy of the sperm whale's head. The organs above the jaw are devoted to sound generation.

Atop the whale's skull is positioned a large complex of organs filled with a liquid mixture of fats and waxes called spermaceti. The purpose of this complex is to generate powerful and focused clicking sounds, which the sperm whale uses for echolocation and communication.

The spermaceti organ is like a large barrel of spermaceti. Its surrounding wall, known as the case, is extremely tough and fibrous. The case can hold within it up to 1,900 litres of spermaceti. It is proportionately larger in males. This oil is a mixture of triglycerides and wax esters. The proportion of wax esters in the spermaceti organ increases with the age of the whale: 38–51% in calves, 58–87% in adult females, and 71–94% in adult males. The spermaceti at the core of the organ has a higher wax content than the outer areas. The speed of sound in spermaceti is 2,684 m/s (at 40 kHz, 36 °C), making it nearly twice as fast as in the oil in a dolphin's melon.

Below the spermaceti organ lies the "junk" which consists of compartments of spermaceti separated by cartilage. It is analogous to the melon found in other toothed whales. The structure of the junk redistributes physical stress across the skull and may have evolved to protect the head during ramming.

Running through the head are two air passages. The left passage runs alongside the spermaceti organ and goes directly to the blowhole, whilst the right passage runs underneath the spermaceti organ and passes air through a pair of phonic lips and into the distal sac at the very front of the nose. The distal sac is connected to the blowhole and the terminus of the left passage. When the whale is submerged, it can close the blowhole, and air that passes through the phonic lips can circulate back to the lungs. The sperm whale, unlike other odontocetes, has only one pair of phonic lips, whereas all other toothed whales have two, and it is located at the front of the nose instead of behind the melon.

At the posterior end of this spermaceti complex is the frontal sac, which covers the concave surface of the cranium. The posterior wall of the frontal sac is covered with fluid–filled knobs, which are about 4–13 mm in diameter and separated by narrow grooves. The anterior wall is smooth. The knobbly surface reflects sound waves that come through the spermaceti organ from the phonic lips. The grooves between the knobs trap a film of air that is consistent whatever the orientation or depth of the whale, making it an excellent sound mirror.

The spermaceti organs may also help adjust the whale's buoyancy. It is hypothesized that before the whale dives, cold water enters the organ, and it is likely that the blood vessels constrict, reducing blood flow, and, hence, temperature. The wax therefore solidifies and reduces in volume. The increase in specific density generates a down force of about 392 newtons (88 lbf) and allows the whale to dive with less effort. During the hunt, oxygen consumption, together with blood vessel dilation, produces heat and melts the spermaceti, increasing its buoyancy and enabling easy surfacing. However, more recent work has found many problems with this theory including the lack of anatomical structures for the actual heat exchange.

Herman Melville's fictional story Moby-Dick suggests that the "case" containing the spermaceti serves as a battering ram for use in fights between males. A few famous instances include the well-documented sinking of the ships Essex and Ann Alexander by attackers estimated to weigh only one-fifth as much as the ships.

Eyes and vision

The sperm whale's eye does not differ greatly from those of other toothed whales except in size. It is the largest among the toothed whales, weighing about 170 g. It is overall ellipsoid in shape, compressed along the visual axis, measuring about 7×7×3 cm. The cornea is elliptical and the lens is spherical. The sclera is very hard and thick, roughly 1 cm anteriorly and 3 cm posteriorly. There are no ciliary muscles. The choroid is very thick and contains a fibrous tapetum lucidum. Like other toothed whales, the sperm whale can retract and protrude its eyes, thanks to a 2-cm-thick retractor muscle attached around the eye at the equator, but are unable to roll the eyes in their sockets.

According to Fristrup and Harbison (2002), sperm whales eyes afford good vision and sensitivity to light. They conjectured that sperm whales use vision to hunt squid, either by detecting silhouettes from below or by detecting bioluminescence. If sperm whales detect silhouettes, Fristrup and Harbison suggested that they hunt upside down, allowing them to use the forward parts of the ventral visual fields for binocular vision.


For some time researchers have been aware that pods of sperm whales may sleep for short periods, assuming a vertical position with their heads just below or at the surface. A 2008 study published in Current Biology recorded evidence that whales may sleep with both sides of the brain. It appears that some whales may fall into a deep sleep for about 7 percent of the time, most often between 6 p.m. and midnight.


Sperm whales are carnivores (meat-eaters). They mostly hunt medium-sized squid. They also eat many kinds of fish such as skate. Sometimes they hunt giant squid that live on the ocean bottom at great depths. They can dive up to 2250 m and stay underwater for 1 hour. The largest bulls (males) will sometimes even eat colossal squid.


Like other toothed whales, the sperm whale uses echolocation, a way of sensing in which they emit high-pitched clicks and sense them as they bounce back off objects (like prey). This is crucial in hunting in the dark ocean depths.

Current conservation status

The total number of sperm whales in the world is unknown, but is thought to be in the hundreds of thousands. The conservation outlook is brighter than for many other whales. Commercial whaling has ceased, and the species is protected almost worldwide, though records indicate that in the 11-year period starting from 2000, Japan has caught 51 sperm whales. Fishermen do not target the creatures sperm whales eat, but long-line fishing operations in the Gulf of Alaska have complained about sperm whales stealing fish from their lines.

Currently, entanglement in fishing nets and collisions with ships represent the greatest threats to the sperm whale population. Other threats include ingestion of marine debris, ocean noise, and chemical pollution. The International Union for Conservation of Nature (IUCN) regards the sperm whale as being "vulnerable". The species is listed as endangered on the United States Endangered Species Act.

Images for kids

kids search engine
Sperm whale Facts for Kids. Kiddle Encyclopedia.