kids encyclopedia robot

Fighter aircraft facts for kids

Kids Encyclopedia Facts
Formation of a Legacy, Hertiage flight merges aviation past and present 86-16-51-22
An F-16 Fighting Falcon (left), P-51D Mustang (bottom), F-86 Sabre (top), and F-22 Raptor (right) fly in a formation representing four generations of American fighters.

Fighter aircraft are fixed-wing military aircraft designed primarily for air-to-air combat. In military conflict, the role of fighter aircraft is to establish air superiority of the battlespace. Domination of the airspace above a battlefield permits bombers and attack aircraft to engage in tactical and strategic bombing of enemy targets.

The key performance features of a fighter include not only its firepower but also its high speed and maneuverability relative to the target aircraft. The success or failure of a combatant's efforts to gain air superiority hinges on several factors including the skill of its pilots, the tactical soundness of its doctrine for deploying its fighters, and the numbers and performance of those fighters.

Many modern fighter aircraft also have secondary capabilities such as ground attack and some types, such as fighter-bombers, are designed from the outset for dual roles. Other fighter designs are highly specialized while still filling the main air superiority role, and these include the interceptor, heavy fighter, and night fighter.

History

Airco D.H.2 ExCC
Airco DH.2 "pusher" scout

Since World War I, achieving and maintaining air superiority has been considered essential for victory in conventional warfare.

Fighters continued to be developed throughout World War I, to deny enemy aircraft and dirigibles the ability to gather information by reconnaissance over the battlefield. Early fighters were very small and lightly armed by later standards, and most were biplanes built with a wooden frame covered with fabric, and a maximum airspeed of about 100 mph (160 km/h). As control of the airspace over armies became increasingly important, all of the major powers developed fighters to support their military operations. Between the wars, wood was largely replaced in part or whole by metal tubing, and finally aluminum stressed skin structures (monocoque) began to predominate.

By World War II, most fighters were all-metal monoplanes armed with batteries of machine guns or cannons and some were capable of speeds approaching 400 mph (640 km/h). Most fighters up to this point had one engine, but a number of twin-engine fighters were built; however they were found to be outmatched against single-engine fighters and were relegated to other tasks, such as night fighters equipped with primitive radar sets.

By the end of the war, turbojet engines were replacing piston engines as the means of propulsion, further increasing aircraft speed. Since the weight of the turbojet engine was far less than a piston engine, having two engines was no longer a handicap and one or two were used, depending on requirements. This in turn required the development of ejection seats so the pilot could escape, and G-suits to counter the much greater forces being applied to the pilot during maneuvers.

In the 1950s, radar was fitted to day fighters, since due to ever increasing air-to-air weapon ranges, pilots could no longer see far enough ahead to prepare for the opposition. Subsequently, radar capabilities grew enormously and are now the primary method of target acquisition. Wings were made thinner and swept back to reduce transonic drag, which required new manufacturing methods to obtain sufficient strength. Skins were no longer sheet metal riveted to a structure, but milled from large slabs of alloy. The sound barrier was broken, and after a few false starts due to required changes in controls, speeds quickly reached Mach 2, past which aircraft cannot maneuver sufficiently to avoid attack.

Air-to-air missiles largely replaced guns and rockets in the early 1960s since both were believed unusable at the speeds being attained, however the Vietnam War showed that guns still had a role to play, and most fighters built since then are fitted with cannon (typically between 20 and 30 mm (0.79 and 1.18 in) in caliber) in addition to missiles. Most modern combat aircraft can carry at least a pair of air-to-air missiles.

In the 1970s, turbofans replaced turbojets, improving fuel economy enough that the last piston engine support aircraft could be replaced with jets, making multi-role combat aircraft possible. Honeycomb structures began to replace milled structures, and the first composite components began to appear on components subjected to little stress.

With the steady improvements in computers, defensive systems have become increasingly efficient. To counter this, stealth technologies have been pursued by the United States, Russia, India and China. The first step was to find ways to reduce the aircraft's reflectivity to radar waves by burying the engines, eliminating sharp corners and diverting any reflections away from the radar sets of opposing forces. Various materials were found to absorb the energy from radar waves, and were incorporated into special finishes that have since found widespread application. Composite structures have become widespread, including major structural components, and have helped to counterbalance the steady increases in aircraft weight—most modern fighters are larger and heavier than World War II medium bombers.

Because of the importance of air superiority, since the early days of aerial combat armed forces have constantly competed to develop technologically superior fighters and to deploy these fighters in greater numbers, and fielding a viable fighter fleet consumes a substantial proportion of the defense budgets of modern armed forces.

The global combat aircraft market was worth $45.75 billion in 2017 and is projected by Frost & Sullivan at $47.2 billion in 2026: 35% modernization programs and 65% aircraft purchases, dominated by the Lockheed Martin F-35 with 3,000 deliveries over 20 years.

Classification

A fighter aircraft is primarily designed for air-to-air combat. A given type may be designed for specific combat conditions, and in some cases for additional roles such as air-to-ground fighting. Historically the British Royal Flying Corps and Royal Air Force referred to them as "scouts" until the early 1920s, while the U.S. Army called them "pursuit" aircraft until the late 1940s. The UK changed to calling them fighters in the 1920s, while the US Army did so in the 1940s. A short-range fighter designed to defend against incoming enemy aircraft is known as an interceptor.

Recognized classes of fighter include:

Of these, the Fighter-bomber, reconnaissance fighter and strike fighter classes are dual-role, possessing qualities of the fighter alongside some other battlefield role. Some fighter designs may be developed in variants performing other roles entirely, such as ground attack or unarmed reconnaissance. This may be for political or national security reasons, for advertising purposes, or other reasons.

The Sopwith Camel and other "fighting scouts" of World War I performed a great deal of ground-attack work. In World War II, the USAAF and RAF often favored fighters over dedicated light bombers or dive bombers, and types such as the Republic P-47 Thunderbolt and Hawker Hurricane that were no longer competitive as aerial combat fighters were relegated to ground attack. Several aircraft, such as the F-111 and F-117, have received fighter designations though they had no fighter capability due to political or other reasons. The F-111B variant was originally intended for a fighter role with the U.S. Navy, but it was canceled. This blurring follows the use of fighters from their earliest days for "attack" or "strike" operations against ground targets by means of strafing or dropping small bombs and incendiaries. Versatile multi role fighter-bombers such as the McDonnell Douglas F/A-18 Hornet are a less expensive option than having a range of specialized aircraft types.

Some of the most expensive fighters such as the US Grumman F-14 Tomcat, McDonnell Douglas F-15 Eagle, Lockheed Martin F-22 Raptor and Russian Sukhoi Su-27 were employed as all-weather interceptors as well as air superiority fighter aircraft, while commonly developing air-to-ground roles late in their careers. An interceptor is generally an aircraft intended to target (or intercept) bombers and so often trades maneuverability for climb rate.

As a part of military nomenclature, a letter is often assigned to various types of aircraft to indicate their use, along with a number to indicate the specific aircraft. The letters used to designate a fighter differ in various countries. In the English-speaking world, "F" is often now used to indicate a fighter (e.g. Lockheed Martin F-35 Lightning II or Supermarine Spitfire F.22), though "P" used to be used in the US for pursuit (e.g. Curtiss P-40 Warhawk), a translation of the French "C" (Dewoitine D.520 C.1) for Chasseur while in Russia "I" was used for Istrebitel, or exterminator (Polikarpov I-16).


Weapons

F-104 Waffenschacht
M61 20 mm gun installation on West German Lockheed F-104G Starfighter

Fighters were typically armed with guns only for air to air combat up through the late 1950s, though unguided rockets for mostly air to ground use and limited air to air use were deployed in WWII. From the late 1950s forward guided missiles came into use for air to air combat. Throughout this history fighters which by surprise or maneuver attain a good firing position have achieved the kill about one third to one half the time, no matter what weapons were carried. The only major historic exception to this has been the low effectiveness shown by guided missiles in the first one to two decades of their existence.

From WWI to the present, fighter aircraft have featured machine guns and automatic cannons as weapons, and they are still considered as essential back-up weapons today. The power of air-to-air guns has increased greatly over time, and has kept them relevant in the guided missile era. In WWI two rifle (approximately 0.30) caliber machine guns was the typical armament, producing a weight of fire of about 0.4 kg (0.88 lb) per second. In WWII rifle caliber machine guns also remained common, though usually in larger numbers or supplemented with much heavier 0.50 caliber machine guns or cannons. The standard WWII American fighter armament of six 0.50-cal (12.7mm) machine guns fired a bullet weight of approximately 3.7 kg/sec (8.1 lbs/sec), at a muzzle velocity of 856 m/s (2,810 ft/s). British and German aircraft tended to use a mix of machine guns and autocannon, the latter firing explosive projectiles. Later British fighters were exclusively cannon-armed, the US were not able to produce a reliable cannon in high numbers and most fighters remained equipped only with heavy machine guns despite the US Navy pressing for a change to 20mm.

Post war 20-30 mm revolver cannon and rotary cannon were introduced. The modern M61 Vulcan 20 mm rotary cannon that is standard on current American fighters fires a projectile weight of about 10 kg/s (22 lb/s), nearly three times that of six 0.50-cal machine guns, with higher velocity of 1,052 m/s (3450 ft/s) supporting a flatter trajectory, and with exploding projectiles. Modern fighter gun systems also feature ranging radar and lead computing electronic gun sights to ease the problem of aim point to compensate for projectile drop and time of flight (target lead) in the complex three dimensional maneuvering of air-to-air combat. However, getting in position to use the guns is still a challenge. The range of guns is longer than in the past but still quite limited compared to missiles, with modern gun systems having a maximum effective range of approximately 1,000 meters. High probability of kill also requires firing to usually occur from the rear hemisphere of the target. Despite these limits, when pilots are well trained in air-to-air gunnery and these conditions are satisfied, gun systems are tactically effective and highly cost efficient. The cost of a gun firing pass is far less than firing a missile, and the projectiles are not subject to the thermal and electronic countermeasures than can sometimes defeat missiles. When the enemy can be approached to within gun range, the lethality of guns is approximately a 25% to 50% chance of "kill per firing pass".

The range limitations of guns, and the desire to overcome large variations in fighter pilot skill and thus achieve higher force effectiveness, led to the development of the guided air-to-air missile. There are two main variations, heat-seeking (infrared homing), and radar guided. Radar missiles are typically several times heavier and more expensive than heat-seekers, but with longer range, greater destructive power, and ability to track through clouds.

AIM-120 AMRAAM
AIM-9 Sidewinder (underwing pylon) and AIM-120 AMRAAM (wingtip) carried by lightweight F-16 fighter

The highly successful AIM-9 Sidewinder heat-seeking (infrared homing) short-range missile was developed by the United States Navy in the 1950s. These small missiles are easily carried by lighter fighters, and provide effective ranges of approximately 10 to 35 km (~6 to 22 miles). Beginning with the AIM-9L in 1977, subsequent versions of Sidewinder have added all-aspect capability, the ability to use the lower heat of air to skin friction on the target aircraft to track from the front and sides. The latest (2003 service entry) AIM-9X also features "off-boresight" and "lock on after launch" capabilities, which allow the pilot to make a quick launch of a missile to track a target anywhere within the pilot's vision. The AIM-9X development cost was U.S. $3 billion in mid to late 1990s dollars, and 2015 per unit procurement cost is $0.6 million each. The missile weighs 85.3 kg (188 lbs), and has a maximum range of 35 km (22 miles) at higher altitudes. Like most air-to-air missiles, lower altitude range can be as limited as only about one third of maximum due to higher drag and less ability to coast downward.

The effectiveness of infrared homing missiles was only 7% early in the Vietnam War, but improved to approximately 15%–40% over the course of the war. The AIM-4 Falcon used by the USAF had kill rates of approximately 7% and was considered a failure. The AIM-9B Sidewinder introduced later achieved 15% kill rates, and the further improved AIM-9D and J models reached 19%. The AIM-9G used in the last year of the Vietnam air war achieved 40%. Israel used almost totally guns in the 1967 Six-Day War, achieving 60 kills and 10 losses. However, Israel made much more use of steadily improving heat-seeking missiles in the 1973 Yom Kippur War. In this extensive conflict Israel scored 171 of 261 total kills with heat-seeking missiles (65.5%), 5 kills with radar guided missiles (1.9%), and 85 kills with guns (32.6%). The AIM-9L Sidewinder scored 19 kills out of 26 fired missiles (73%) in the 1982 Falklands War. But, in a conflict against opponents using thermal countermeasures, the United States only scored 11 kills out of 48 fired (Pk = 23%) with the follow-on AIM-9M in the 1991 Gulf War.

Radar guided missiles fall into two main missile guidance types. In the historically more common semi-active radar homing case the missile homes in on radar signals transmitted from launching aircraft and reflected from the target. This has the disadvantage that the firing aircraft must maintain radar lock on the target and is thus less free to maneuver and more vulnerable to attack. A widely deployed missile of this type was the AIM-7 Sparrow, which entered service in 1954 and was produced in improving versions until 1997. In more advanced active radar homing the missile is guided to the vicinity of the target by internal data on its projected position, and then "goes active" with an internally carried small radar system to conduct terminal guidance to the target. This eliminates the requirement for the firing aircraft to maintain radar lock, and thus greatly reduces risk. A prominent example is the AIM-120 AMRAAM, which was first fielded in 1991 as the AIM-7 replacement, and which has no firm retirement date as of 2016. The current AIM-120D version has a maximum high altitude range of greater than 160 km (>99 miles), and cost approximately $2.4 million each (2016). As is typical with most other missiles, range at lower altitude may be as little as one third that of high altitude.

In the Vietnam air war radar missile kill reliability was approximately 10% at shorter ranges, and even worse at longer ranges due to reduced radar return and greater time for the target aircraft to detect the incoming missile and take evasive action. At one point in the Vietnam war, the U.S. Navy fired 50 AIM-7 Sparrow radar guided missiles in a row without a hit. Between 1958 and 1982 in five wars there were 2,014 combined heat-seeking and radar guided missile firings by fighter pilots engaged in air-to-air combat, achieving 528 kills, of which 76 were radar missile kills, for a combined effectiveness of 26%. However, only four of the 76 radar missile kills were in the beyond-visual-range mode intended to be the strength of radar guided missiles. The United States invested over $10 billion in air-to-air radar missile technology from the 1950s to the early 1970s. Amortized over actual kills achieved by the U.S. and its allies, each radar guided missile kill thus cost over $130 million. The defeated enemy aircraft were for the most part older MiG-17s, −19s, and −21s, with new cost of $0.3 million to $3 million each. Thus, the radar missile investment over that period far exceeded the value of enemy aircraft destroyed, and furthermore had very little of the intended BVR effectiveness.

ILA 2008 PD 446
An MBDA Meteor, an ARH BVR AAM used on the Eurofighter Typhoon, Saab JAS 39 Gripen, Lockheed Martin F-35, and Dassault Rafale

However, continuing heavy development investment and rapidly advancing electronic technology led to significant improvement in radar missile reliabilities from the late 1970s onward. Radar guided missiles achieved 75% Pk (9 kills out of 12 shots) in operations in the Gulf War in 1991. The percentage of kills achieved by radar guided missiles also surpassed 50% of total kills for the first time by 1991. Since 1991, 20 of 61 kills worldwide have been beyond-visual-range using radar missiles. Discounting an accidental friendly fire kill, in operational use the AIM-120D (the current main American radar guided missile) has achieved 9 kills out of 16 shots for a 56% Pk. Six of these kills were BVR, out of 13 shots, for a 46% BVR Pk. Though all these kills were against less capable opponents who were not equipped with operating radar, electronic countermeasures, or a comparable weapon themselves, the BVR Pk was a significant improvement from earlier eras. However, a current concern is electronic countermeasures to radar missiles, which are thought to be reducing the effectiveness of the AIM-120D. Some experts believe that as of 2016 the European Meteor missile, the Russian R-37M, and the Chinese PL-15 are more resistant to countermeasures and more effective than the AIM-120D.

Now that higher reliabilities have been achieved, both types of missiles allow the fighter pilot to often avoid the risk of the short-range dogfight, where only the more experienced and skilled fighter pilots tend to prevail, and where even the finest fighter pilot can simply get unlucky. Taking maximum advantage of complicated missile parameters in both attack and defense against competent opponents does take considerable experience and skill, but against surprised opponents lacking comparable capability and countermeasures, air-to-air missile warfare is relatively simple. By partially automating air-to-air combat and reducing reliance on gun kills mostly achieved by only a small expert fraction of fighter pilots, air-to-air missiles now serve as highly effective force multipliers.

Modern fighters

2000s-2020s: Fifth-generation

F-22 Raptor at the 2008 Joint Services Open House airshow 4
Lockheed Martin/Boeing F-22 Raptor at the 2008 Joint Services Open House airshow

Currently the cutting edge of fighter design, fifth-generation fighters are designed from the start to operate in a network-centric combat environment. They have multifunction AESA radars with high-bandwidth, low-probability of intercept (LPI) data transmission capabilities.

thermoset and thermoplastic materials, advanced composites, conformal sensors, heat-resistant coatings, low-observable wire meshes to cover intake and cooling vents, heat ablating tiles on the exhaust troughs (seen on the Northrop YF-23), and coating internal and external metal areas with radar-absorbent materials and paint (RAM/RAP) are used for these fighters.

Such aircraft are sophisticated and expensive. The fifth generation was ushered in by the Lockheed Martin/Boeing F-22 Raptor in late 2005. The U.S. Air Force originally planned to acquire 650 F-22s, but now only 187 will be built. As a result, its unit flyaway cost (FAC) is around US$150 million. To spread the development costs – and production base – more broadly, the Joint Strike Fighter (JSF) program enrolls eight other countries as cost- and risk-sharing partners. Altogether, the nine partner nations anticipate procuring over 3,000 Lockheed Martin F-35 Lightning II fighters at an anticipated average FAC of $80–85 million. The F-35, however, is designed to be a family of three aircraft, a conventional take-off and landing (CTOL) fighter, a short take-off and vertical landing (STOVL) fighter, and a Catapult Assisted Take Off But Arrested Recovery (CATOBAR) fighter, each of which has a different unit price and slightly varying specifications in terms of fuel capacity (and therefore range), size and payload.

Sukhoi T-50 Maksimov
A Sukhoi Su-57 of the Russian Air Force

Other countries have initiated fifth-generation fighter development projects. In December 2010, it was discovered that China is developing the 5th generation fighter Chengdu J-20. The J-20 took its maiden flight in January 2011. The Shenyang FC-31 took its maiden flight on 31 October 2012, and developed a carrier-based version based on Chinese aircraft carriers. United Aircraft Corporation with Russia's Mikoyan LMFS and Sukhoi Su-75 Checkmate plan, Sukhoi Su-57 became the first fifth-generation fighter jets in service with the Russian Aerospace Forces on 2020, and launch missiles in the Russo-Ukrainian War in 2022. Japan is exploring its technical feasibility to produce fifth-generation fighters. India is developing the Advanced Medium Combat Aircraft (AMCA), a medium weight stealth fighter jet designated to enter into serial production by late 2030s. India also had initiated a joint fifth generation heavy fighter with Russia called the FGFA. As of 2018 May, the project is suspected to have not yielded desired progress or results for India and has been put on hold or dropped altogether. Other countries considering fielding an indigenous or semi-indigenous advanced fifth generation aircraft include South Korea, Sweden, Turkey and Pakistan.

2020s-present: Sixth-generation

As of November 2018, France, Germany, China, Japan, Russia, the United Kingdom and the United States have announced the development of a sixth-generation aircraft program.

France and Germany will develop a joint sixth-generation fighter to replace their current fleet of Dassault Rafales, Eurofighter Typhoons, and Panavia Tornados by 2035. The overall development will be led by a collaboration of Dassault and Airbus, while the engines will reportedly be jointly developed by Safran and MTU Aero Engines. Thales and MBDA are also seeking a stake in the project. Spain is reportedly planning to join the program in the later stages and is expected to sign a letter of intent in early 2019.

Currently at the concept stage, the first sixth-generation jet fighter is expected to enter service in the United States Navy in 2025–30 period. The USAF seeks a new fighter for the 2030–50 period named the "Next Generation Tactical Aircraft" ("Next Gen TACAIR"). The US Navy looks to replace its F/A-18E/F Super Hornets beginning in 2025 with the Next Generation Air Dominance air superiority fighter.

The United Kingdom's proposed stealth fighter is being developed by a European consortium called Team Tempest, consisting of BAE Systems, Rolls-Royce, Leonardo S.p.A. and MBDA. The aircraft is intended to enter service in 2035.

See also

Kids robot.svg In Spanish: Avión de caza para niños

kids search engine
Fighter aircraft Facts for Kids. Kiddle Encyclopedia.