Geomorphology facts for kids
Geomorphology is the scientific study of landforms and the processes that shape them.
More broadly, it studies the evolution of the topography of a planet. Geomorphologists seek to understand why landscapes look the way they do, to understand landform history and dynamics, and to predict future changes. They use a combination of field observation, physical experiment, and numerical modeling.
Geomorphology is part of geography, geology, geodesy, engineering geology and archaeology. This range of interests leads to a wide variety of research styles and interests in the field.
Contents
Processes
Geomorphically relevant processes generally fall into (1) the production of regolith by weathering and erosion, (2) the transport of that material, and (3) its eventual deposition. Primary surface processes responsible for most topographic features include wind, waves, chemical dissolution, mass wasting, groundwater movement, surface water flow, glacial action, tectonism, and volcanism. Other more exotic geomorphic processes might include periglacial (freeze-thaw) processes, salt-mediated action, marine currents activity, seepage of fluids through the seafloor or extraterrestrial impact.
Aeolian processes
Aeolian processes pertain to the activity of the winds and more specifically, to the winds' ability to shape the surface of the Earth. Winds may erode, transport, and deposit materials, and are effective agents in regions with sparse vegetation and a large supply of fine, unconsolidated sediments. Although water and mass flow tend to mobilize more material than wind in most environments, aeolian processes are important in arid environments such as deserts.
Biological processes
The interaction of living organisms with landforms, or biogeomorphologic processes, can be of many different forms, and is probably of profound importance for the terrestrial geomorphic system as a whole. Biology can influence very many geomorphic processes, ranging from biogeochemical processes controlling chemical weathering, to the influence of mechanical processes like burrowing and tree throw on soil development, to even controlling global erosion rates through modulation of climate through carbon dioxide balance. Terrestrial landscapes in which the role of biology in mediating surface processes can be definitively excluded are extremely rare, but may hold important information for understanding the geomorphology of other planets, such as Mars.
Fluvial processes
Rivers and streams are not only conduits of water, but also of sediment. The water, as it flows over the channel bed, is able to mobilize sediment and transport it downstream, either as bed load, suspended load or dissolved load. The rate of sediment transport depends on the availability of sediment itself and on the river's discharge. Rivers are also capable of eroding into rock and creating new sediment, both from their own beds and also by coupling to the surrounding hillslopes. In this way, rivers are thought of as setting the base level for large-scale landscape evolution in nonglacial environments. Rivers are key links in the connectivity of different landscape elements.
As rivers flow across the landscape, they generally increase in size, merging with other rivers. The network of rivers thus formed is a drainage system. These systems take on four general patterns: dendritic, radial, rectangular, and trellis. Dendritic happens to be the most common, occurring when the underlying stratum is stable (without faulting). Drainage systems have four primary components: drainage basin, alluvial valley, delta plain, and receiving basin. Some geomorphic examples of fluvial landforms are alluvial fans, oxbow lakes, and fluvial terraces.
Glacial processes
Glaciers, while geographically restricted, are effective agents of landscape change. The gradual movement of ice down a valley causes abrasion and plucking of the underlying rock. Abrasion produces fine sediment, termed glacial flour. The debris transported by the glacier, when the glacier recedes, is termed a moraine. Glacial erosion is responsible for U-shaped valleys, as opposed to the V-shaped valleys of fluvial origin.
The way glacial processes interact with other landscape elements, particularly hillslope and fluvial processes, is an important aspect of Plio-Pleistocene landscape evolution and its sedimentary record in many high mountain environments. Environments that have been relatively recently glaciated but are no longer may still show elevated landscape change rates compared to those that have never been glaciated. Nonglacial geomorphic processes which nevertheless have been conditioned by past glaciation are termed paraglacial processes. This concept contrasts with periglacial processes, which are directly driven by formation or melting of ice or frost.
Hillslope processes
Soil, regolith, and rock move downslope under the force of gravity via creep, slides, flows, topples, and falls. Such mass wasting occurs on both terrestrial and submarine slopes, and has been observed on Earth, Mars, Venus, Titan and Iapetus.
Ongoing hillslope processes can change the topology of the hillslope surface, which in turn can change the rates of those processes. Hillslopes that steepen up to certain critical thresholds are capable of shedding extremely large volumes of material very quickly, making hillslope processes an extremely important element of landscapes in tectonically active areas.
On the Earth, biological processes such as burrowing or tree throw may play important roles in setting the rates of some hillslope processes.
Igneous processes
Both volcanic (eruptive) and plutonic (intrusive) igneous processes can have important impacts on geomorphology. The action of volcanoes tends to rejuvenize landscapes, covering the old land surface with lava and tephra, releasing pyroclastic material and forcing rivers through new paths. The cones built by eruptions also build substantial new topography, which can be acted upon by other surface processes. Plutonic rocks intruding then solidifying at depth can cause both uplift or subsidence of the surface, depending on whether the new material is denser or less dense than the rock it displaces.
Tectonic processes
Tectonic effects on geomorphology can range from scales of millions of years to minutes or less. The effects of tectonics on landscape are heavily dependent on the nature of the underlying bedrock fabric that more or less controls what kind of local morphology tectonics can shape. Earthquakes can, in terms of minutes, submerge large areas of land creating new wetlands. Isostatic rebound can account for significant changes over hundreds to thousands of years, and allows erosion of a mountain belt to promote further erosion as mass is removed from the chain and the belt uplifts. Long-term plate tectonic dynamics give rise to orogenic belts, large mountain chains with typical lifetimes of many tens of millions of years, which form focal points for high rates of fluvial and hillslope processes and thus long-term sediment production.
Features of deeper mantle dynamics such as plumes and delamination of the lower lithosphere have also been hypothesised to play important roles in the long term (> million year), large scale (thousands of km) evolution of the Earth's topography (see dynamic topography). Both can promote surface uplift through isostasy as hotter, less dense, mantle rocks displace cooler, denser, mantle rocks at depth in the Earth.
Marine processes
Marine processes are those associated with the action of waves, marine currents and seepage of fluids through the seafloor. Mass wasting and submarine landsliding are also important processes for some aspects of marine geomorphology. Because ocean basins are the ultimate sinks for a large fraction of terrestrial sediments, depositional processes and their related forms (e.g., sediment fans, deltas) are particularly important as elements of marine geomorphology.
Images for kids
-
Badlands incised into shale at the foot of the North Caineville Plateau, Utah, within the pass carved by the Fremont River and known as the Blue Gate. GK Gilbert studied the landscapes of this area in great detail, forming the observational foundation for many of his studies on geomorphology.
-
Waves and water chemistry lead to structural failure in exposed rocks
-
Lake "Veľké Hincovo pleso" in High Tatras, Slovakia. The lake occupies an "overdeepening" carved by flowing ice that once occupied this glacial valley.
-
Part of the Great Escarpment in the Drakensberg, southern Africa. This landscape, with its high altitude plateau being incised into by the steep slopes of the escarpment, was cited by Davis as a classic example of his cycle of erosion.
See also
In Spanish: Geomorfología para niños