kids encyclopedia robot

Geyser facts for kids

Kids Encyclopedia Facts
GeysirEruptionNear
Strokkur geyser, Iceland

A geyser is a hot spring which shoots out water and steam. They erupt when pressure has built up, often at regular intervals. There are about a thousand geysers around the world. About half are in Yellowstone National Park, Wyoming, United States.

Causes

Steam Phase eruption of Castle geyser with double rainbow
Steam phase eruption of Castle Geyser shows rainbows in Yellowstone National Park

Geysers are made in special geological conditions. Only a few places on Earth have these conditions. Because of this, geysers are not very common. One place is the Yellowstone National Park, which is the remains of a gigantic volcano. Another is Iceland, which sits on top of the Mid-Atlantic Ridge, where new Earth's crust is formed.

Geysers are often near active volcanos. This is because the geyser is caused by magma. Surface water usually goes down to about 2,000 metres (6,600 ft). There, it mixes with hot rocks. The pressurized water begins to boil. When it is pressured enough, hot water and steam burst out of the geyser.

Form and function

Steamboat Geyser in Yellowstone
Steamboat Geyser in Yellowstone National Park

Individual geysers do not last forever, but systems of geysers last as long as the geological situation continues. The oldest individual geysers are only a few thousand years old. Geysers are usually near volcanic areas. As the water boils, the pressure increases. This forces hot steam and water to the surface through the geyser. Geysers are usually made because of three things that are around volcanoes.

Great heat
A geyser needs a lot of heat. This heat comes from magma. This magma needs to be near the surface of the earth. Geysers need much more heat than is usually found near the earth's surface. This is why they are often around volcanoes or volcanic areas.
Water
The water that bursts from a geyser must travel underground through deep, high-pressure cracks in the earth's crust.
A plumbing system
For the heated water to form a geyser, a plumbing system is needed. The water needs to be held while it is being heated. The plumbing system is made up of a system of fractures, fissures, spaces and sometimes cavities (holes).
Strokkur, Iceland
The geyser Strokkur in Iceland – a tourist spot.

Most importantly, the temperatures near the bottom of the geyser become high enough to start boiling the water. Steam bubbles come out of the top of the column. They burst through the geyser's vent. Some water flows or splashes out. This makes the weight of the column of water and the pressure on the water below less. When this pressure is released, the hot water turns into steam. It boils violently.

Commercialization

Geysers are used for various activities such as electricity generation, heating and tourism. Many geothermal reserves are found all around the world. The geyser fields in Iceland are some of the most commercially viable geyser locations in the world. Since the 1920s hot water directed from the geysers has been used to heat greenhouses and to grow food that otherwise could not have been cultivated in Iceland's inhospitable climate. Steam and hot water from the geysers has also been used for heating homes since 1943 in Iceland.

Solar system

Fountains of Enceladus PIA07758
Jets thought to be geysers erupting from Enceladus' subsurface

There are several bodies in the Solar System where jet-like eruptions, often called "geysers" and "cryogeysers", have been seen. Unlike geysers on Earth, these are eruptions of gas, together with dust or ice particles, but without liquid.

Water vapor streams have been seen near the south pole of Saturn's moon Enceladus. Nitrogen eruptions have been seen on Neptune's moon Triton. Carbon dioxide eruptions from the southern polar ice cap of Mars have also been seen.

Major geyser fields and their distribution

World geyser distribution
Distribution of major geysers in the world.

Geysers are quite rare, requiring a combination of water, heat, and fortuitous plumbing. The combination exists in few places on Earth.

Yellowstone National Park, U.S.

Yellowstone is the largest geyser locale, containing thousands of hot springs, and approximately 300 to 500 geysers. It is home to half of the world's total number of geysers in its nine geyser basins. It is located mostly in Wyoming, USA, with small portions in Montana and Idaho. Yellowstone includes the world's tallest active geyser (Steamboat Geyser in Norris Geyser Basin).

Valley of Geysers, Russia

The Valley of Geysers (Russian: Долина гейзеров) located in the Kamchatka Peninsula of Russia is the second largest concentration of geysers in the world. The area was discovered and explored by Tatyana Ustinova in 1941. Approximately 200 geysers exist in the area along with many hot-water springs and perpetual spouters. The area was formed due to a vigorous volcanic activity. The peculiar way of eruptions is an important feature of these geysers. Most of the geysers erupt at angles, and only very few have the geyser cones that exist at many other of the world's geyser fields. On June 3, 2007, a massive mudflow influenced two thirds of the valley. It was then reported that a thermal lake was forming above the valley. Few days later, waters were observed to have receded somewhat, exposing some of the submerged features. Velikan Geyser, one of the field's largest, was not buried in the slide and has recently been observed to be active.

El Tatio, Chile

The name "El Tatio" comes from the Quechua word for oven. El Tatio is located in the high valleys on the Andes surrounded by many active volcanoes in Chile, South America at around 4,200 metres (13,800 ft) above mean sea level. The valley is home to approximately 80 geysers at present. It became the largest geyser field in the Southern Hemisphere after the destruction of many of the New Zealand geysers, and is the third largest geyser field in the world. The salient feature of these geysers is that the height of their eruptions is very low, the tallest being only six metres (20 ft) high, but with steam columns that can be over 20 metres (66 ft) high. The average geyser eruption height at El Tatio is about 750 millimetres (30 in).

Taupō Volcanic Zone, New Zealand

The Taupō Volcanic Zone is located on New Zealand's North Island. It is 350 kilometres (217 mi) long by 50 km wide (31 mi) and lies over a subduction zone in the Earth's crust. Mount Ruapehu marks its southwestern end, while the submarine Whakatāne seamount (85 km or 53 mi beyond Whakaari / White Island) is considered its northeastern limit. Many geysers in this zone were destroyed due to geothermal developments and a hydroelectric reservoir, but several dozen geysers still exist.

In the beginning of the 20th century, the largest geyser ever known, the Waimangu Geyser existed in this zone. It began erupting in 1900 and erupted periodically for four years until a landslide changed the local water table. Eruptions of Waimangu would typically reach 160 metres (520 ft) and some superbursts are known to have reached 500 metres (1,600 ft). Recent scientific work indicates that the Earth's crust below the zone may be as little as five kilometres (3.1 mi) thick. Beneath this lies a film of magma 50 kilometres (30 mi) wide and 160 kilometres (100 mi) long.

Iceland

Due to the high rate of volcanic activity in Iceland, it is home to some of the most famous geysers in the world. There are around 20–29 active geysers in the country as well as numerous formerly active geysers. Icelandic geysers are distributed in the zone stretching from south-west to north-east, along the boundary between the Eurasian Plate and the North American Plate. Most of the Icelandic geysers are comparatively short-lived, it is also characteristic that many geysers here are reactivated or newly created after earthquakes, becoming dormant or extinct after some years or some decades.

Two most prominent geysers of Iceland are located in Haukadalur. The Great Geysir, which first erupted in the 14th century, gave rise to the word geyser. By 1896, Geysir was almost dormant before an earthquake that year caused eruptions to begin again, occurring several times a day, but in 1916, eruptions all but ceased. Throughout much of the 20th century, eruptions did happen from time to time, usually following earthquakes. Some man-made improvements were made to the spring and eruptions were forced with soap on special occasions. Earthquakes in June 2000 subsequently reawakened the giant for a time but it is not currently erupting regularly. The nearby Strokkur geyser erupts every 5–8 minutes to a height of some 30 metres (98 ft).

Geysers are known to have existed in at least a dozen other areas on the island. Some former geysers have developed historical farms, which benefitted from the use of the hot water since medieval times.

Extinct and dormant geyser fields

There used to be two large geysers fields in NevadaBeowawe and Steamboat Springs—but they were destroyed by the installation of nearby geothermal power plants. At the plants, geothermal drilling reduced the available heat and lowered the local water table to the point that geyser activity could no longer be sustained.

Many of New Zealand's geysers have been destroyed by humans in the last century. Several New Zealand geysers have also become dormant or extinct by natural means. The main remaining field is Whakarewarewa at Rotorua. Two thirds of the geysers at Orakei Korako were flooded by the construction of the hydroelectric Ohakuri dam in 1961. The Wairakei field was lost to a geothermal power plant in 1958. The Rotomahana field was destroyed by the 1886 eruption of Mount Tarawera.

Images for kids

See also

Kids robot.svg In Spanish: Géiser para niños

kids search engine
Geyser Facts for Kids. Kiddle Encyclopedia.