kids encyclopedia robot

Seed facts for kids

Kids Encyclopedia Facts
Разнообразие семян
Seeds of different plants (left to right, not to scale). First row: Poppy, Red pepper, Strawberry, Apple tree, Blackberry, Rice, Carum. Second row: Mustard, Eggplant, Physalis, grapes, raspberries, red rice, Patchouli. Third row: Figs, Lycium barbarum, Beets, Blueberries, Golden Kiwifruit, Rosehip, Basil. Fourth row: Pink pepper, Tomato, Radish, Carrot, Matthiola, Dill, Coriander. Fifth row: Black pepper, White cabbage, Napa cabbage, Seabuckthorn, Parsley, Dandelion, Capsella bursa-pastoris. Sixth row: Cauliflower, Radish, Kiwifruit, Grenadilla, Passion fruit, Melissa, Tagetes erecta.
Monocot dicot seed
Diagram of a generalized dicot seed (1) versus a generalized monocot seed (2). A. Seed Coat B. Cotyledon C. Hilum D. Plumule E. Radicle F. Endosperm
Comparison of Monocotyledons and Dicotyledons
Comparison of monocotyledons and dicotyledons

A seed is the part of a seed plant which can grow into a new plant. It is a reproductive structure which disperses, and can survive for some time. A typical seed includes three basic parts: (1) an embryo, (2) a supply of nutrients for the embryo, and (3) a seed coat.

There are many different kinds of seeds. Some plants make a lot of seeds, some make only a few. Seeds are often hard and very small, but some are larger. The coconut is as big as a child's head, but it contains more than just a seed. At the start, seeds are dormant (resting inside their coat) for a while. When the seed is ready to develop, it needs water, air and warmth but not sunlight to become a seedling.

Seeds carry the food that helps the new plant begin to grow. This food store is in the endosperm, and/or in the cotyledons. Many kinds of seeds are good food for animals and people. The many kinds of grain that people grow, such as rice, wheat, and maize, are all seeds. Seeds are often inside fruits.

Seed production

Angiosperm seeds are produced in a hard or fleshy structure called a fruit that encloses the seeds for protection in order to secure healthy growth. Some fruits have layers of both hard and fleshy material. In gymnosperms, no special structure develops to enclose the seeds, which begin their development "naked" on the bracts of cones. However, the seeds do become covered by the cone scales as they develop in some species of conifer.

Seed production in natural plant populations varies widely from year to year in response to weather variables, insects and diseases, and internal cycles within the plants themselves. Over a 20-year period, for example, forests composed of loblolly pine and shortleaf pine produced from 0 to nearly 5 million sound pine seeds per hectare. Over this period, there were six bumper, five poor, and nine good seed crops, when evaluated for production of adequate seedlings for natural forest reproduction.

Development

Seed Development Cycle
Stages of seed development:
Key: 1. Endosperm 2. Zygote 3. Embryo 4. Suspensor 5. Cotyledons 6. Shoot Apical Meristem 7. Root Apical Meristem 8. Radicle 9. Hypocotyl 10. Epicotyl 11. Seed Coat

Angiosperm (flowering plants) seeds consist of three genetically distinct constituents: (1) the embryo formed from the zygote, (2) the endosperm, which is normally triploid, (3) the seed coat from tissue derived from the maternal tissue of the ovule. In angiosperms, the process of seed development begins with double fertilization, which involves the fusion of two male gametes with the egg cell and the central cell to form the primary endosperm and the zygote. Right after fertilization, the zygote is mostly inactive, but the primary endosperm divides rapidly to form the endosperm tissue. This tissue becomes the food the young plant will consume until the roots have developed after germination.

Ovule

Ovule-Gymno-Angio-en
Plant ovules: Gymnosperm ovule on left, angiosperm ovule (inside ovary) on right

After fertilization the ovules develop into the seeds. The ovule consists of a number of components:

  • The funicle (funiculus, funiculi) or seed stalk which attaches the ovule to the placenta and hence ovary or fruit wall, at the pericarp.
  • The nucellus, the remnant of the megasporangium and main region of the ovule where the megagametophyte develops.
  • The micropyle, a small pore or opening in the apex of the integument of the ovule where the pollen tube usually enters during the process of fertilization.
  • The chalaza, the base of the ovule opposite the micropyle, where integument and nucellus are joined together.

The shape of the ovules as they develop often affects the final shape of the seeds.

Embryo

Ginkgo embryo and gametophyte
The inside of a Ginkgo seed, showing a well-developed embryo, nutritive tissue (megagametophyte), and a bit of the surrounding seed coat

The main components of the embryo are:

  • The cotyledons, the seed leaves, attached to the embryonic axis. There may be one (Monocotyledons), or two (Dicotyledons). The cotyledons are also the source of nutrients in the non-endospermic dicotyledons, in which case they replace the endosperm, and are thick and leathery. In endospermic seeds the cotyledons are thin and papery. Dicotyledons have the point of attachment opposite one another on the axis.
  • The epicotyl, the embryonic axis above the point of attachment of the cotyledon(s).
  • The plumule, the tip of the epicotyl, and has a feathery appearance due to the presence of young leaf primordia at the apex, and will become the shoot upon germination.
  • The hypocotyl, the embryonic axis below the point of attachment of the cotyledon(s), connecting the epicotyl and the radicle, being the stem-root transition zone.
  • The radicle, the basal tip of the hypocotyl, grows into the primary root.

Shape and appearance

A large number of terms are used to describe seed shapes, many of which are largely self-explanatory such as Bean-shaped (reniform) – resembling a kidney, with lobed ends on either side of the hilum, Square or Oblong – angular with all sides more or less equal or longer than wide, Triangular – three sided, broadest below middle, Elliptic or Ovate or Obovate – rounded at both ends, or egg shaped (ovate or obovate, broader at one end), being rounded but either symmetrical about the middle or broader below the middle or broader above the middle.

Other less obvious terms include discoid (resembling a disc or plate, having both thickness and parallel faces and with a rounded margin), ellipsoid, globose (spherical), or subglobose (Inflated, but less than spherical), lenticular, oblong, ovoid, reniform and sectoroid. Striate seeds are striped with parallel, longitudinal lines or ridges. The commonest colours are brown and black, other colours are infrequent. The surface varies from highly polished to considerably roughened. The surface may have a variety of appendages (see Seed coat). A seed coat with the consistency of cork is referred to as suberose. Other terms include crustaceous (hard, thin or brittle).

Structure

Avocado seed diagram-en
The parts of an avocado seed (a dicot), showing the seed coat and embryo
Budowa nasienia-dwuliscienne
Diagram of the internal structure of a dicot seed and embryo: (a) seed coat, (b) endosperm, (c) cotyledon, (d) hypocotyl

A typical seed includes two basic parts:

  1. an embryo;
  2. a seed coat.

In addition, the endosperm forms a supply of nutrients for the embryo in most monocotyledons and the endospermic dicotyledons.

Embryo

In endospermic seeds, there are two distinct regions inside the seed coat, an upper and larger endosperm and a lower smaller embryo. The embryo is the fertilised ovule, an immature plant from which a new plant will grow under proper conditions. The embryo has one cotyledon or seed leaf in monocotyledons, two cotyledons in almost all dicotyledons and two or more in gymnosperms.

Nutrient storage

Within the seed, there usually is a store of nutrients for the seedling that will grow from the embryo.

Size and seed set

Seed variety
A collection of various vegetable and herb seeds

Seeds are very diverse in size. The dust-like orchid seeds are the smallest, with about one million seeds per gram.

Plants that produce smaller seeds can generate many more seeds per flower, while plants with larger seeds invest more resources into those seeds and normally produce fewer seeds. Small seeds are quicker to ripen and can be dispersed sooner, so fall blooming plants often have small seeds. Many annual plants produce great quantities of smaller seeds; this helps to ensure at least a few will end in a favorable place for growth.

Herbaceous perennials and woody plants often have larger seeds; they can produce seeds over many years, and larger seeds have more energy reserves for germination and seedling growth and produce larger, more established seedlings after germination.

Functions

Seeds serve several functions for the plants that produce them. Key among these functions are nourishment of the embryo, dispersal to a new location, and dormancy during unfavorable conditions. Seeds fundamentally are means of reproduction, and most seeds are the product of sexual reproduction which produces a remixing of genetic material and phenotype variability on which natural selection acts.

Embryo nourishment

Seeds protect and nourish the embryo or young plant. They usually give a seedling a faster start than a sporeling from a spore, because of the larger food reserves in the seed and the multicellularity of the enclosed embryo.

Dispersal

Unlike animals, plants are limited in their ability to seek out favorable conditions for life and growth. As a result, plants have evolved many ways to disperse their offspring by dispersing their seeds.

A seed must somehow "arrive" at a location and be there at a time favorable for germination and growth.

By wind (anemochory)

Taraxacum sect. Ruderalia MHNT
Dandelion seeds are contained within achenes, which can be carried long distances by the wind.
Milkweed-in-seed2
The seed pod of milkweed (Asclepias syriaca)
  • Some seeds (e.g., pine) have a wing that aids in wind dispersal.
  • The dustlike seeds of orchids are carried efficiently by the wind.
  • Some seeds (e.g. milkweed, poplar) have hairs that aid in wind dispersal.

Other seeds are enclosed in fruit structures that aid wind dispersal in similar ways:

By water (hydrochory)

  • Some plants, such as Mucuna and Dioclea, produce buoyant seeds termed sea-beans or drift seeds because they float in rivers to the oceans and wash up on beaches.

By animals (zoochory)

  • Seeds (burrs) with barbs or hooks (e.g. acaena, burdock, dock) which attach to animal fur or feathers, and then drop off later.
  • Seeds with a fleshy covering (e.g. apple, cherry, juniper) are eaten by animals (birds, mammals, reptiles, fish) which then disperse these seeds in their droppings.
  • Seeds (nuts) are attractive long-term storable food resources for animals (e.g. acorns, hazelnut, walnut); the seeds are stored some distance from the parent plant, and some escape being eaten if the animal forgets them.

Myrmecochory is the dispersal of seeds by ants. Foraging ants disperse seeds which have appendages called elaiosomes (e.g. bloodroot, trilliums, acacias, and many species of Proteaceae).

Dormancy

Seed dormancy has two main functions: the first is synchronizing germination with the optimal conditions for survival of the resulting seedling; the second is spreading germination of a batch of seeds over time so a catastrophe (e.g. late frosts, drought, herbivory) does not result in the death of all offspring of a plant.

Seed dormancy is defined as a seed failing to germinate under environmental conditions optimal for germination, normally when the environment is at a suitable temperature with proper soil moisture.

Germination

Sunflower seedlings
Germinating sunflower seedlings

Seed germination is a process by which a seed embryo develops into a seedling. It involves the reactivation of the metabolic pathways that lead to growth and the emergence of the radicle or seed root and plumule or shoot. The emergence of the seedling above the soil surface is the next phase of the plant's growth and is called seedling establishment.

Three fundamental conditions must exist before germination can occur. (1) The embryo must be alive, called seed viability. (2) Any dormancy requirements that prevent germination must be overcome. (3) The proper environmental conditions must exist for germination.

Three distinct phases of seed germination occur: water imbibition; lag phase; and radicle emergence.

In order for the seed coat to split, the embryo must imbibe (soak up water), which causes it to swell, splitting the seed coat.

Economic importance

Phaseolus vulgaris seed
Phaseolus vulgaris (common bean or green bean) seeds are diverse in size, shape, and color.

Seed market

In the United States farmers spent $22 billion on seeds in 2018, a 35 percent increase since 2010. DowDuPont and Monsanto account for 72 percent of corn and soybean seed sales in the U.S. with the average price of a bag of GMO corn seed is priced at $270.

Edible seeds

Many seeds are edible and the majority of human calories comes from seeds, especially from cereals, legumes and nuts. Seeds also provide most cooking oils, many beverages and spices and some important food additives. In different seeds the seed embryo or the endosperm dominates and provides most of the nutrients. The storage proteins of the embryo and endosperm differ in their amino acid content and physical properties. For example, the gluten of wheat, important in providing the elastic property to bread dough is strictly an endosperm protein.

Seeds are used to propagate many crops such as cereals, legumes, forest trees, turfgrasses, and pasture grasses. Particularly in developing countries, a major constraint faced is the inadequacy of the marketing channels to get the seed to poor farmers. Thus the use of farmer-retained seed remains quite common.

Seeds are also eaten by animals (seed predation), and are also fed to livestock or provided as birdseed.

Other uses

Cotton fiber grows attached to cotton plant seeds. Other seed fibers are from kapok and milkweed.

Many important nonfood oils are extracted from seeds. Linseed oil is used in paints. Oil from jojoba and crambe are similar to whale oil.

Seeds are the source of some medicines including castor oil, tea tree oil and the quack cancer drug Laetrile.

Many seeds have been used as beads in necklaces and rosaries including Job's tears, Chinaberry, rosary pea, and castor bean. However, the latter three are also poisonous.

Other seed uses include:

  • Seeds once used as weights for balances.
  • Seeds used as toys by children, such as for the game Conkers.
  • Resin from Clusia rosea seeds used to caulk boats.
  • Nematicide from milkweed seeds.
  • Cottonseed meal used as animal feed and fertilizer.

Images for kids

See also

Kids robot.svg In Spanish: Semilla para niños

kids search engine
Seed Facts for Kids. Kiddle Encyclopedia.