kids encyclopedia robot

Bee facts for kids

Kids Encyclopedia Facts
Quick facts for kids
Bees
Bees Collecting Pollen 2004-08-14.jpg
A honey bee
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Suborder:
Superfamily:
Apoidea
Untipografico - Jardín Botánico de Madrid (Bombus) (by)
Bumblebee at work

Bees are flying insects of the Hymenoptera, which also includes ants, wasps and sawflies. There are about 20,000 species of bees. Bees collect pollen from flowers. Bees can be found on all continents except Antarctica.

Bees fall into four groups:

The European honey bee (called Apis mellifera by biologists), is kept by humans for honey. Keeping bees to make honey is called beekeeping, or apiculture.

Evolution

The earliest animal-pollinated flowers were pollinated by insects such as beetles, long before bees first appeared. Bees are different because they are specialized as pollination agents, with behavioral and physical modifications that make pollination easier. Bees are generally better at the task than other pollinating insects such as beetles, flies, butterflies and pollen wasps. The appearance of such floral specialists is believed to have driven the adaptive radiation of the angiosperms, and, in turn, the bees themselves.

Bees, like ants, are a specialized form of wasp. The ancestors of bees were wasps in a family which preyed on other insects. The switch from insect prey to pollen may have resulted from the capture of prey insects that were covered with pollen when they were fed to the wasp larvae. Similar behaviour could be switched to pollen collection. This same evolutionary scenario has occurred within the vespoid wasps, where the group known as "pollen wasps" also evolved from predatory ancestors.

A recently reported bee fossil, of the genus Melittosphex, is considered "an extinct lineage of pollen-collecting Apoidea, sister-group to the modern bees", and dates from the Lower Cretaceous (~100 mya). Features of its morphology place it clearly within the bees, but it retains two unmodified ancestral traits of the legs which betray its origin. The issue is still under debate, and the phylogenetic relationships among bee families are poorly understood.

Description

European Honeybee (Apis mellifera) lapping mouthparts, showing labium and maxillae.
The lapping mouthparts of a honeybee, showing labium and maxillae

It is usually easy to recognise that a particular insect is a bee. They differ from closely related groups such as wasps by having branched or plume-like setae (bristles), combs on the forelimbs for cleaning their antennae, small anatomical differences in the limb structure and the venation of the hind wings, and in females, by having the seventh dorsal abdominal plate divided into two half-plates.

Behaviourally, one of the most obvious characteristics of bees is that they collect pollen to provide provisions for their young, and have the necessary adaptations to do this. However, certain wasp species such as pollen wasps have similar behaviours, and a few species of bee scavenge from carcases to feed their offspring. The world's largest species of bee is thought to be the Indonesian resin bee Megachile pluto, whose females can attain a length of 39 millimetres (1.54 in). The smallest species may be dwarf stingless bees in the tribe Meliponini whose workers are less than 2 millimetres (0.08 in) in length.

Carpenter bee head and compound eyes
Head-on view of a carpenter bee, showing antennae, three ocelli, compound eyes, sensory bristles and mouthparts

A bee has a pair of large compound eyes which cover much of the surface of the head. Between and above these are three small simple eyes (ocelli) which provide information for the bee on light intensity. The antennae usually have thirteen segments in males and twelve in females and are geniculate, having an elbow joint part way along. They house large numbers of sense organs that can detect touch (mechanoreceptors), smell and taste, and small, hairlike mechanoreceptors that can detect air movement so as to "hear" sounds. The mouthparts are adapted for both chewing and sucking by having both a pair of mandibles and a long proboscis for sucking up nectar.

The thorax has three segments, each with a pair of robust legs, and a pair of membranous wings on the hind two segments. The front legs of corbiculate bees bear combs for cleaning the antennae, and in many species the hind legs bear pollen baskets, flattened sections with incurving hairs to secure the collected pollen. The wings are synchronised in flight and the somewhat smaller hind wings connect to the forewings by a row of hooks along their margin which connect to a groove in the forewing. The abdomen has nine segments, the hindermost three being modified into the sting.

Sociality

Haplodiploid breeding system

Wasp attack
Willing to die for their sisters: worker honey bees killed defending their hive against wasps, along with a dead wasp. Such altruistic behaviour may be favoured by the haplodiploid sex determination system of bees.

According to inclusive fitness theory, organisms can gain fitness not just through increasing their own reproductive output, but also that of close relatives. In evolutionary terms, individuals should help relatives when Cost < Relatedness * Benefit. The requirements for eusociality are more easily fulfilled by haplodiploid species such as bees because of their unusual relatedness structure. In haplodiploid species, females develop from fertilized eggs and males from unfertilized eggs. Because a male is haploid (has only one copy of each gene), his daughters (which are diploid, with two copies of each gene) share 100% of his genes and 50% of their mother's. Therefore, they share 75% of their genes with each other. This mechanism of sex determination gives rise to what W. D. Hamilton termed "supersisters", more closely related to their sisters than they would be to their own offspring. Workers often do not reproduce, but they can pass on more of their genes by helping to raise their sisters (as queens) than they would by having their own offspring (each of which would only have 50% of their genes), assuming they would produce similar numbers. This unusual situation has been proposed as an explanation of the multiple independent evolutions of eusociality (arising at least nine separate times) within the Hymenoptera. However, some eusocial species such as termites are not haplodiploid. Conversely, all bees are haplodiploid but not all are eusocial, and among eusocial species many queens mate with multiple males, creating half-sisters that share only 25% of their genes. Haplodiploidy is thus neither necessary nor sufficient for eusociality. But, monogamy (queens mating singly) is the ancestral state for all eusocial species so far investigated, so it is likely that haplodiploidy contributed to the evolution of eusociality in bees.

Eusociality

Bee swarm on fallen tree03
A honey bee swarm

Bees may be solitary or may live in various types of communities. Sociality, of several different types, appears to have evolved independently many times within the bees. The most advanced of these are species with eusocial colonies; these are characterised by having cooperative brood care and a division of labour into reproductive and non-reproductive adults, plus overlapping generations. This division of labour creates specialized groups within eusocial societies which are called castes. In some species, groups of cohabiting females may be sisters, and if there is a division of labour within the group, they are considered semisocial. The group is called eusocial if, in addition, the group consists of a mother (the queen) and her daughters (workers). When the castes are purely behavioural alternatives, with no morphological differentiation other than size, the system is considered primitively eusocial, as in many paper wasps; when the castes are morphologically discrete, the system is considered highly eusocial.

The true honey bees (genus Apis, of which there are seven currently-recognized species) are highly eusocial, and are among the best known of all insects. Their colonies are established by swarms, consisting of a queen and several hundred workers. There are 29 subspecies of one of these species, Apis mellifera, native to Europe, the Middle East, and Africa. Africanized bees are a hybrid strain of A. mellifera that escaped from experiments involving crossing European and African subspecies; they are extremely defensive.

Stingless bees are also highly eusocial. They practise mass provisioning, with complex nest architecture and perennial colonies also established via swarming.

Bumblebee 05
A bumblebee carrying pollen in its pollen baskets (corbiculae)

Many bumblebees are eusocial, similar to the eusocial Vespidae such as hornets in that the queen initiates a nest on her own rather than by swarming. Bumblebee colonies typically have from 50 to 200 bees at peak population, which occurs in mid to late summer. Nest architecture is simple, limited by the size of the pre-existing nest cavity, and colonies rarely last more than a year. In 2011, the International Union for Conservation of Nature set up the Bumblebee Specialist Group to review the threat status of all bumblebee species worldwide using the IUCN Red List criteria.

There are many more species of primitively eusocial than highly eusocial bees, but they have been studied less often. Most are in the family Halictidae, or "sweat bees". Colonies are typically small, with a dozen or fewer workers, on average. Queens and workers differ only in size, if at all. Most species have a single season colony cycle, even in the tropics, and only mated females hibernate. A few species have long active seasons and attain colony sizes in the hundreds, such as Halictus hesperus. Some species are eusocial in parts of their range and solitary in others, or have a mix of eusocial and solitary nests in the same population. The orchid bees (Apidae) include some primitively eusocial species with similar biology. Some allodapine bees (Apidae) form primitively eusocial colonies, with progressive provisioning: a larva's food is supplied gradually as it develops, as is the case in honey bees and some bumblebees.

Solitary and communal bees

Megachile rotundata
A leafcutting bee, Megachile rotundata cutting circles from acacia leaves

Most other bees, including familiar insects such as carpenter bees, leafcutter bees and mason bees are solitary in the sense that every female is fertile, and typically inhabits a nest she constructs herself. There is no division of labor so these nests lack queens and worker bees for these species. Solitary bees typically produce neither honey nor beeswax.

Solitary bees are important pollinators; they gather pollen to provision their nests with food for their brood. Often it is mixed with nectar to form a paste-like consistency. Some solitary bees have advanced types of pollen-carrying structures on their bodies. A very few species of solitary bees are being cultured for commercial pollination. Most of these species belong to a distinct set of genera which are commonly known by their nesting behavior or preferences, namely: carpenter bees, sweat bees, mason bees, polyester bees, squash bees, dwarf carpenter bees, leafcutter bees, alkali bees and digger bees.

Anthidium February 2008-1
A solitary bee, Anthidium florentinum (family Megachilidae), visiting Lantana

Most solitary bees nest in the ground in a variety of soil textures and conditions while others create nests in hollow reeds or twigs, holes in wood. The female typically creates a compartment (a "cell") with an egg and some provisions for the resulting larva, then seals it off. A nest may consist of numerous cells. When the nest is in wood, usually the last (those closer to the entrance) contain eggs that will become males. The adult does not provide care for the brood once the egg is laid, and usually dies after making one or more nests. The males typically emerge first and are ready for mating when the females emerge. Solitary bees are either stingless or very unlikely to sting (only in self-defense, if ever).

While solitary females each make individual nests, some species. such as the European mason bee Hoplitis anthocopoides, and the Dawson's Burrowing bee, Amegilla dawsoni, are gregarious, preferring to make nests near others of the same species, and giving the appearance of being social. Large groups of solitary bee nests are called aggregations, to distinguish them from colonies. In some species, multiple females share a common nest, but each makes and provisions her own cells independently. This type of group is called "communal" and is not uncommon. The primary advantage appears to be that a nest entrance is easier to defend from predators and parasites when there are multiple females using that same entrance on a regular basis.

Biology

Apoidea
Nest of the common carder bumblebee. The wax canopy has been removed to show winged workers and pupae in irregularly placed wax cells.

Life cycle

Carpenter Bee Galleries
Carpenter bee nests in a cedar wood beam (sawn open)

The life cycle of a bee, be it a solitary or social species, involves the laying of an egg, the development through several moults of a legless larva, a pupation stage during which the insect undergoes complete metamorphosis, followed by the emergence of a winged adult. Most solitary bees and bumble bees in temperate climates overwinter as adults or pupae and emerge in spring when increasing numbers of flowering plants come into bloom. The males usually emerge first and search for females with which to mate. The sex of a bee is determined by whether or not the egg is fertilised; after mating, a female stores the sperm, and determines which sex is required at the time each individual egg is laid, fertilised eggs producing female offspring and unfertilised eggs, males. Tropical bees may have several generations in a year and no diapause stage.

Bienen mit Brut 2
Honeybees on brood comb with eggs and larvae in cells

The egg is generally oblong, slightly curved and tapering at one end. In the case of solitary bees, each one is laid in a cell with a supply of mixed pollen and nectar next to it. This may be rolled into a pellet or placed in a pile and is known as mass provisioning. In social species of bee there is progressive provisioning with the larva being fed regularly while it grows. The nest varies from a hole in the ground or in wood, in solitary bees, to a substantial structure with wax combs in bumblebees and honey bees.

The larvae are generally whitish grubs, roughly oval and bluntly-pointed at both ends. They have fifteen segments and spiracles in each segment for breathing. They have no legs but are able to move within the confines of the cell, helped by tubercles on their sides. They have short horns on the head, jaws for chewing their food and an appendage on either side of the mouth tipped with a bristle. There is a gland under the mouth that secretes a viscous liquid which solidifies into the silk they use to produce their cocoons. The pupa can be seen through the semi-transparent cocoon and over the course of a few days, the insect undergoes metamorphosis into the form of the adult bee. When ready to emerge, it splits its skin dorsally and climbs out of the exuviae as a winged adult and breaks out of the cell.

Flight

Apis mellifera flying
Honeybee in flight carrying pollen in pollen basket

In Antoine Magnan's 1934 book Le vol des insectes, he wrote that he and André Sainte-Laguë had applied the equations of air resistance to insects and found that their flight could not be explained by fixed-wing calculations, but that "One shouldn't be surprised that the results of the calculations don't square with reality". This has led to a common misconception that bees "violate aerodynamic theory", but in fact it merely confirms that bees do not engage in fixed-wing flight, and that their flight is explained by other mechanics, such as those used by helicopters. In 1996 it was shown that vortices created by many insects' wings helped to provide lift. High-speed cinematography and robotic mock-up of a bee wing showed that lift was generated by "the unconventional combination of short, choppy wing strokes, a rapid rotation of the wing as it flops over and reverses direction, and a very fast wing-beat frequency". Wing-beat frequency normally increases as size decreases, but as the bee's wing beat covers such a small arc, it flaps approximately 230 times per second, faster than a fruitfly (200 times per second) which is 80 times smaller.

Navigation, communication, and finding food

Bee dance
Karl von Frisch (1953) discovered that honey bee workers can navigate, indicating the range and direction to food to other workers with a waggle dance.

The ethologist Karl von Frisch studied navigation in the honey bee. He showed that honey bees communicate by the waggle dance, in which a worker indicates the location of a food source to other workers in the hive. He demonstrated that bees can recognize a desired compass direction in three different ways: by the sun, by the polarization pattern of the blue sky, and by the earth’s magnetic field. He showed that the sun is the preferred or main compass; the other mechanisms are used under cloudy skies or inside a dark beehive. Bees navigate using spatial memory with a "rich, map-like organization".

Ecology

Floral relationships

Most bees are polylectic (generalist) meaning they collect pollen from a range of flowering plants, however, some are oligoleges (specialists), in that they only gather pollen from one or a few species or genera of closely related plants. Specialist pollinators also include bee species which gather floral oils instead of pollen, and male orchid bees, which gather aromatic compounds from orchids (one of the few cases where male bees are effective pollinators). Bees are able to sense the presence of desirable flowers through ultraviolet patterning on flowers, floral odors, and even electromagnetic fields. Once landed, a bee then uses nectar quality and pollen taste to determine whether to continue visiting similar flowers.

In rare cases, a plant species may only be effectively pollinated by a single bee species, and some plants are endangered at least in part because their pollinator is also threatened. There is, however, a pronounced tendency for oligolectic bees to be associated with common, widespread plants which are visited by multiple pollinators. There are some forty oligoleges associated with the creosote bush in the arid parts of the United States southwest, for example.

As mimics and models

Bombylius major on flower
The bee-fly Bombylius major, a Batesian mimic of bees, taking nectar and pollinating a flower.
Ophrys apifera flower1
Bee orchid lures male bees to attempt to mate with the flower's lip, which resembles a bee perched on a pink flower.

Many bees are aposematically coloured, typically orange and black, warning of their ability to defend themselves with a powerful sting. As such they are models for Batesian mimicry by non-stinging insects such as bee-flies, robber flies and hoverflies, all of which gain a measure of protection by superficially looking and behaving like bees.

Bees are themselves Müllerian mimics of other aposematic insects with the same colour scheme, including wasps, lycid and other beetles, and many butterflies and moths (Lepidoptera) which are themselves distasteful, often through acquiring bitter and poisonous chemicals from their plant food. All the Müllerian mimics, including bees, benefit from the reduced risk of predation that results from their easily recognised warning coloration.

Bees are also mimicked by plants such as the bee orchid which imitates both the appearance and the scent of a female bee; male bees attempt to mate (pseudocopulation) with the furry lip of the flower, thus pollinating it.

As brood parasites

Bumblebee January 2008-4
Bombus vestalis, a brood parasite of the bumblebee Bombus terrestris

Brood parasites occur in several bee families including the apid subfamily Nomadinae. Females of these bees lack pollen collecting structures (the scopa) and do not construct their own nests. They typically enter the nests of pollen collecting species, and lay their eggs in cells provisioned by the host bee. When the cuckoo bee larva hatches it consumes the host larva's pollen ball, and often the host egg also. The Arctic bee species, Bombus hyperboreus, in particular are an aggressive species that attack and enslave other bees of the same subgenus. However, unlike many other bee brood parasites, they have pollen baskets and often collect pollen.

In the south of Africa, hives of African honeybees (A. mellifera scutellata) are being destroyed by parasitic workers of the Cape honeybee, A. m. capensis. These lay diploid eggs ("thelytoky"), escaping normal worker policing, leading to the colony's destruction; the parasites can then move to other hives.

The cuckoo bees in the Bombus subgenus Psithyrus are closely related to, and resemble, their hosts in looks and size. This common pattern gave rise to the ecological principle "Emery's rule". Others parasitize bees in different families, like Townsendiella, a nomadine apid, two species of which are cleptoparasites of the dasypodaid genus Hesperapis, while the other species in the same genus attacks halictid bees.

Nocturnal bees

Four bee families (Andrenidae, Colletidae, Halictidae, and Apidae) contain some species that are crepuscular. Most are tropical or subtropical, but there are some which live in arid regions at higher latitudes. These bees have greatly enlarged ocelli, which are extremely sensitive to light and dark, though incapable of forming images. Some have refracting superposition compound eyes: these combine the output of many elements of their compound eyes to provide enough light for each retinal photoreceptor. Their ability to fly by night enables them to avoid many predators, and to exploit flowers that produce nectar only or also at night.

Predators, parasites and pathogens

Pair of Merops apiaster feeding detail
The bee-eater, Merops apiaster, specialises in feeding on bees; here a male catches a nuptial gift for his mate.

Vertebrate predators of bees include bee-eaters, shrikes and flycatchers, which make short sallies to catch insects in flight. Swifts and swallows fly almost continually, catching insects as they go. The honey buzzard attacks bees' nests and eats the larvae. The greater honeyguide interacts with humans by guiding them to the nests of wild bees. The humans break open the nests and take the honey and the bird feeds on the larvae and the wax. Among mammals, predators such as the badger dig up bumblebee nests and eat both the larvae and any stored food.

Wasp and bee August 2008-2
The beewolf Philanthus triangulum paralysing a bee with its sting

Specialist ambush predators of visitors to flowers include crab spiders, which wait on flowering plants for pollinating insects; predatory bugs, and praying mantises, some of which (the flower mantises of the tropics) wait motionless, aggressive mimics camouflaged as flowers. Beewolves are large wasps that habitually attack bees; the ethologist Niko Tinbergen estimated that a single colony of the beewolf Philanthus triangulum might kill several thousand honeybees in a day: all the prey he observed were honeybees. Other predatory insects that sometimes catch bees include robber flies and dragonflies.

Honey bees are affected by parasites including acarine and Varroa mites. However, some bees are believed to have a mutualistic relationship with mites.

Bees and humans

In mythology and folklore

Plaque bee-goddess BM GR1860.4-123.4
Gold plaques embossed with winged bee goddesses. Camiros, Rhodes. 7th century B.C.

Three bee maidens with the power of divination and thus speaking truth are described in Homer's Hymn to Hermes, and the food of the gods is "identified as honey"; the bee maidens were originally associated with Apollo, and are probably not correctly identified with the Thriae. Honey, according to a Greek myth, was discovered by a nymph called Melissa ("Bee"); and honey was offered to the Greek gods from Mycenean times. Bees were associated, too, with the Delphic oracle and the prophetess was sometimes called a bee.

The image of a community of honey bees has been used from ancient to modern times, in Aristotle and Plato; in Virgil and Seneca; in Erasmus and Shakespeare; Tolstoy, and by political and social theorists such as Bernard Mandeville and Karl Marx as a model for human society. In English folklore, bees would be told of important events in the household, in a custom known as "Telling the bees".

In literature

Mrs tittlemouse
Beatrix Potter's illustration of Babbity Bumble in The Tale of Mrs Tittlemouse, 1910

Beatrix Potter's illustrated book The Tale of Mrs Tittlemouse (1910) features Babbity Bumble and her brood (pictured).

W. B. Yeats's poem The Lake Isle of Innisfree (1888) contains the couplet "Nine bean rows will I have there, a hive for the honey bee, / And live alone in the bee loud glade." At the time he was living in Bedford Park in the West of London.

Kit Williams' treasure hunt book The Bee on the Comb (1984) uses bees and beekeeping as part of its story and puzzle.

Sue Monk Kidd's The Secret Life of Bees (2004), and the 2009 film starring Dakota Fanning, tells the story of a girl who escapes her abusive home and finds her way to live with a family of beekeepers, the Boatwrights.

Dave Goulson's A Sting in the Tale (2014) describes his efforts to save bumblebees in Britain, as well as much about their biology.

The playwright Laline Paull's fantasy The Bees (2015) tells the tale of a hive bee named Flora 717 from hatching onwards.

The humorous 2007 animated film Bee Movie used Jerry Seinfeld's first script and was his first work for children; he starred as a bee named Barry B. Benson, alongside Renée Zellweger. Critics found its premise awkward and its delivery tame.

Beekeeping

Beekeeper
A commercial beekeeper at work

Humans have kept honey bee colonies, commonly in hives, for millennia. Beekeepers collect honey, beeswax, propolis, pollen, and royal jelly from hives; bees are also kept to pollinate crops and to produce bees for sale to other beekeepers.

Depictions of humans collecting honey from wild bees date to 15,000 years ago; efforts to domesticate them are shown in Egyptian art around 4,500 years ago. Simple hives and smoke were used; jars of honey were found in the tombs of pharaohs such as Tutankhamun. From the 18th century, European understanding of the colonies and biology of bees allowed the construction of the moveable comb hive so that honey could be harvested without destroying the colony. Among Classical Era authors, beekeeping with the use of smoke is described in the History of Animals Book 9 (a book not written by Aristotle himself). The account mentions that bees die after stinging; that workers remove corpses from the hive, and guard it; castes including workers and non-working drones, but "kings" rather than queens; predators including toads and bee-eaters; and the waggle dance, with the "irresistible suggestion" of άpοσειονται (aroseiontai, it waggles) and παρακολουθούσιν (parakolouthousin, they watch).

Beekeeping is described in detail by Virgil in his Eclogues; it is also mentioned in his Aeneid, and in Pliny's Natural History.

As commercial pollinators

Bee landing on a flower
Bee about to land on a sunflower
Peponapis pruinosaCane-12
Squash bees (Apidae) are important pollinators of squashes and cucumbers.

Bees play an important role in pollinating flowering plants, and are the major type of pollinator in many ecosystems that contain flowering plants. It is estimated that one third of the human food supply depends on pollination by insects, birds and bats, most of which is accomplished by bees, whether wild or domesticated.

Contract pollination has overtaken the role of honey production for beekeepers in many countries. From 1972 to 2006, feral honey bees declined dramatically in the US, and they are now almost absent. The number of colonies kept by beekeepers declined slightly, through urbanization, systematic pesticide use, tracheal and Varroa mites, and the closure of beekeeping businesses. In 2006 and 2007 the rate of attrition increased, and was described as colony collapse disorder. In 2010 invertebrate iridescent virus and the fungus Nosema ceranae were shown to be in every killed colony, and deadly in combination. Winter losses increased to about 1/3. Varroa mites were thought to be responsible for about half the losses.

Apart from colony collapse disorder, losses outside the US have been attributed to causes including pesticide seed dressings, such as Clothianidin, Imidacloprid and Thiamethoxam. From 2013 the European Union restricted some pesticides to stop bee populations from declining further. In 2014 the Intergovernmental Panel on Climate Change report warned that bees faced increased risk of extinction because of global warming.

However farmers have focused on alternative solutions in order to mitigate these problems. By raising native plants, they provide food for native bee pollinators like L. vierecki and L. leucozonium, leading to less reliance on honey bee populations.

Botoktawon
Bee larvae as food in the Javanese dish botok tawon

As food

Honey is a natural product produced by bees and stored for their own use, but its sweetness has always appealed to humans. Before domestication of bees was even attempted, humans were raiding their nests for their honey. Smoke was often used to subdue the bees and such activities are depicted in rock paintings in Spain which have been dated to 15,000 BC. Indigenous people in many countries eat insects, including consuming the larvae and pupae of bees, mostly stingless bees. They also gather "bee brood" (the larvae, pupae and surrounding cells) for consumption. In the Indonesian dish botok tawon from Central and East Java, bee larvae are eaten as a companion to rice, after being mixed with shredded coconut, wrapped in banana leaves, and steamed.

Honey bees are used commercially to produce honey. They also produce some substances used as dietary supplements with possible health benefits, pollen, propolis, and royal jelly, though all of these can also cause allergic reactions.

Stings

The painful stings of bees are mostly associated with the poison gland and the Dufour's gland which are abdominal exocrine glands containing various chemicals. The secretions of these glands could also be used for nest construction.

Related pages

Images for kids

See also

Kids robot.svg In Spanish: Anthophila para niños

kids search engine
Bee Facts for Kids. Kiddle Encyclopedia.